C4graphGraph forms for C4 [ 240, 109 ] = XI(Rmap(120,7){5,6|8}_8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 109 ] = XI(Rmap(120,7){5,6|8}_8).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {65, 127}, {44, 124}, {42, 127}, {28, 124}, {29, 125}, {29, 122}, {18, 122}, {19, 123}, {19, 121}, {12, 126}, {12, 121}, {11, 125}, {8, 127}, {1, 121}, {3, 122}, {5, 124}, {7, 126}, {1, 123}, {4, 126}, {1, 122}, {2, 121}, {6, 125}, {1, 125}, {2, 126}, {3, 127}, {7, 123}, {2, 124}, {4, 123}, {9, 137}, {10, 138}, {11, 139}, {12, 140}, {104, 232}, {3, 130}, {110, 239}, {16, 145}, {30, 159}, {79, 206}, {89, 216}, {6, 132}, {111, 237}, {66, 192}, {58, 184}, {7, 133}, {10, 136}, {76, 206}, {96, 226}, {100, 230}, {2, 129}, {109, 238}, {4, 135}, {102, 229}, {4, 128}, {116, 240}, {6, 130}, {13, 137}, {16, 148}, {17, 149}, {18, 150}, {19, 151}, {40, 172}, {3, 134}, {117, 240}, {70, 195}, {24, 157}, {38, 163}, {95, 218}, {5, 131}, {20, 146}, {78, 200}, {98, 228}, {25, 158}, {108, 235}, {5, 141}, {6, 142}, {7, 143}, {9, 128}, {111, 230}, {11, 130}, {13, 132}, {15, 134}, {38, 175}, {94, 215}, {102, 239}, {21, 159}, {67, 201}, {65, 203}, {26, 144}, {27, 145}, {102, 236}, {105, 227}, {8, 131}, {110, 229}, {71, 204}, {54, 189}, {10, 129}, {14, 133}, {31, 148}, {37, 174}, {99, 232}, {36, 168}, {47, 163}, {46, 162}, {45, 161}, {75, 199}, {82, 222}, {5, 136}, {61, 176}, {30, 147}, {80, 221}, {82, 223}, {56, 182}, {72, 198}, {69, 203}, {68, 202}, {96, 238}, {97, 239}, {23, 152}, {109, 226}, {81, 222}, {8, 152}, {54, 166}, {9, 153}, {10, 154}, {11, 155}, {12, 156}, {13, 157}, {14, 158}, {17, 129}, {18, 130}, {76, 220}, {80, 192}, {81, 193}, {32, 177}, {120, 233}, {69, 212}, {68, 213}, {34, 179}, {36, 181}, {38, 183}, {43, 186}, {83, 194}, {89, 200}, {57, 171}, {83, 193}, {86, 196}, {87, 197}, {33, 178}, {64, 211}, {60, 175}, {56, 171}, {52, 167}, {37, 182}, {42, 185}, {74, 217}, {28, 136}, {48, 164}, {49, 164}, {118, 227}, {116, 225}, {71, 210}, {65, 212}, {59, 174}, {57, 172}, {51, 166}, {77, 216}, {24, 142}, {47, 185}, {25, 143}, {84, 194}, {85, 195}, {16, 135}, {58, 173}, {50, 165}, {35, 180}, {39, 176}, {44, 187}, {8, 144}, {118, 238}, {9, 145}, {78, 214}, {17, 136}, {115, 234}, {70, 223}, {42, 179}, {85, 204}, {22, 140}, {120, 226}, {112, 234}, {23, 141}, {14, 146}, {119, 235}, {113, 237}, {47, 179}, {46, 178}, {45, 177}, {15, 147}, {26, 134}, {27, 135}, {108, 240}, {41, 180}, {60, 161}, {55, 170}, {53, 168}, {20, 138}, {114, 236}, {62, 160}, {21, 139}, {79, 209}, {81, 207}, {88, 198}, {15, 144}, {118, 233}, {116, 235}, {66, 221}, {54, 169}, {36, 187}, {39, 184}, {74, 213}, {80, 207}, {59, 155}, {119, 215}, {29, 188}, {61, 156}, {59, 154}, {72, 233}, {63, 157}, {103, 197}, {13, 168}, {15, 170}, {22, 176}, {62, 152}, {40, 142}, {41, 143}, {14, 169}, {112, 215}, {67, 228}, {60, 155}, {20, 189}, {114, 219}, {112, 217}, {69, 236}, {68, 237}, {22, 191}, {72, 226}, {73, 227}, {77, 231}, {21, 190}, {120, 211}, {43, 128}, {96, 203}, {106, 193}, {108, 199}, {53, 153}, {104, 196}, {44, 129}, {64, 237}, {57, 148}, {73, 228}, {96, 205}, {25, 183}, {35, 141}, {97, 207}, {71, 232}, {76, 227}, {59, 139}, {105, 217}, {120, 202}, {67, 240}, {83, 224}, {85, 230}, {93, 238}, {99, 208}, {101, 214}, {19, 167}, {84, 224}, {85, 225}, {92, 232}, {93, 233}, {94, 234}, {97, 213}, {101, 209}, {106, 222}, {32, 149}, {109, 216}, {34, 151}, {40, 157}, {80, 229}, {105, 220}, {22, 160}, {23, 161}, {100, 210}, {33, 150}, {41, 158}, {98, 218}, {103, 223}, {104, 208}, {28, 165}, {98, 219}, {100, 221}, {20, 174}, {21, 175}, {24, 162}, {25, 163}, {42, 144}, {43, 145}, {16, 171}, {113, 202}, {63, 132}, {29, 166}, {35, 152}, {39, 156}, {95, 228}, {111, 211}, {117, 201}, {17, 172}, {111, 210}, {62, 131}, {36, 153}, {38, 155}, {40, 149}, {90, 231}, {102, 219}, {107, 214}, {26, 164}, {119, 201}, {81, 239}, {89, 231}, {18, 173}, {27, 164}, {31, 160}, {37, 154}, {99, 220}, {87, 150}, {66, 128}, {115, 177}, {103, 163}, {64, 133}, {66, 135}, {100, 161}, {119, 177}, {45, 234}, {65, 134}, {30, 214}, {110, 166}, {46, 231}, {112, 185}, {91, 146}, {88, 147}, {117, 190}, {118, 186}, {31, 209}, {113, 191}, {84, 154}, {48, 224}, {49, 224}, {116, 165}, {113, 160}, {95, 142}, {51, 225}, {110, 188}, {55, 229}, {52, 230}, {91, 137}, {94, 140}, {50, 225}, {86, 133}, {56, 236}, {98, 182}, {114, 167}, {92, 138}, {93, 139}, {23, 192}, {90, 141}, {26, 194}, {24, 193}, {27, 194}, {78, 151}, {86, 143}, {90, 131}, {99, 186}, {30, 196}, {115, 169}, {31, 197}, {97, 187}, {101, 191}, {105, 179}, {48, 235}, {95, 132}, {101, 190}, {72, 149}, {64, 158}, {84, 138}, {28, 195}, {109, 178}, {53, 212}, {115, 146}, {49, 211}, {107, 137}, {70, 165}, {77, 169}, {92, 184}, {82, 183}, {114, 151}, {32, 198}, {33, 199}, {75, 173}, {91, 189}, {106, 140}, {90, 178}, {61, 212}, {34, 200}, {117, 159}, {58, 208}, {63, 210}, {94, 176}, {62, 209}, {45, 221}, {61, 205}, {51, 195}, {47, 223}, {46, 222}, {75, 187}, {76, 188}, {77, 189}, {78, 190}, {79, 191}, {82, 162}, {68, 181}, {70, 183}, {83, 162}, {88, 170}, {92, 174}, {93, 175}, {107, 153}, {41, 218}, {69, 182}, {63, 204}, {55, 196}, {73, 186}, {74, 185}, {79, 188}, {91, 168}, {103, 148}, {88, 172}, {107, 159}, {106, 156}, {32, 215}, {67, 180}, {39, 208}, {43, 220}, {52, 204}, {55, 207}, {54, 206}, {53, 205}, {33, 216}, {50, 203}, {48, 201}, {44, 213}, {35, 218}, {87, 173}, {108, 150}, {34, 217}, {49, 202}, {104, 147}, {52, 200}, {60, 192}, {86, 170}, {87, 171}, {51, 206}, {58, 199}, {56, 197}, {73, 180}, {37, 219}, {75, 181}, {89, 167}, {50, 205}, {71, 184}, {57, 198}, {74, 181} }>;

(II) A more general form is to represent the graph as the orbit of {65, 127} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 26)(19, 29)(20, 30)(22, 33)(23, 35)(25, 38)(27, 40)(28, 42)(31, 46)(32, 48)(34, 51)(36, 53)(37, 55)(39, 58)(41, 60)(43, 63)(44, 65)(45, 67)(47, 70)(49, 72)(50, 74)(52, 76)(54, 78)(56, 81)(57, 83)(59, 86)(61, 75)(62, 90)(64, 93)(66, 95)(68, 96)(69, 97)(71, 99)(73, 100)(77, 101)(79, 89)(80, 98)(82, 103)(84, 88)(85, 105)(87, 106)(91, 107)(92, 104)(94, 108)(109, 113)(110, 114)(111, 118)(112, 116)(115, 117)(121, 122)(123, 125)(124, 127)(126, 130)(128, 132)(129, 134)(133, 139)(135, 142)(136, 144)(138, 147)(140, 150)(141, 152)(143, 155)(145, 157)(146, 159)(148, 162)(149, 164)(151, 166)(153, 168)(154, 170)(156, 173)(158, 175)(160, 178)(161, 180)(163, 183)(165, 185)(167, 188)(169, 190)(171, 193)(172, 194)(174, 196)(176, 199)(177, 201)(179, 195)(181, 205)(182, 207)(184, 208)(186, 210)(187, 212)(189, 214)(191, 216)(192, 218)(197, 222)(198, 224)(200, 206)(202, 226)(203, 213)(204, 220)(209, 231)(211, 233)(215, 235)(217, 225)(219, 229)(221, 228)(227, 230)(234, 240)(236, 239)(237, 238)
b: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(12, 19)(13, 20)(15, 23)(16, 25)(18, 28)(21, 32)(22, 34)(24, 37)(26, 35)(27, 41)(29, 44)(30, 45)(31, 47)(33, 50)(36, 54)(38, 57)(39, 52)(40, 59)(42, 62)(43, 64)(46, 69)(48, 67)(49, 73)(51, 75)(53, 77)(55, 80)(56, 82)(58, 85)(60, 88)(61, 89)(63, 92)(65, 90)(66, 86)(68, 76)(70, 87)(72, 93)(74, 79)(78, 94)(81, 102)(83, 98)(84, 95)(96, 109)(97, 110)(99, 111)(100, 104)(101, 112)(105, 113)(106, 114)(107, 115)(108, 116)(117, 119)(118, 120)(122, 124)(123, 126)(125, 129)(127, 131)(128, 133)(130, 136)(132, 138)(134, 141)(135, 143)(137, 146)(139, 149)(140, 151)(142, 154)(144, 152)(145, 158)(147, 161)(148, 163)(150, 165)(153, 169)(155, 172)(156, 167)(157, 174)(159, 177)(160, 179)(162, 182)(164, 180)(166, 187)(168, 189)(170, 192)(171, 183)(173, 195)(175, 198)(176, 200)(178, 203)(181, 206)(184, 204)(185, 209)(186, 211)(188, 213)(190, 215)(191, 217)(193, 219)(194, 218)(196, 221)(197, 223)(199, 225)(202, 227)(205, 216)(207, 229)(208, 230)(210, 232)(212, 231)(214, 234)(220, 237)(222, 236)(224, 228)(226, 238)(235, 240)
c: (2, 6)(3, 4)(5, 13)(7, 18)(8, 9)(10, 24)(11, 12)(14, 33)(15, 16)(17, 40)(19, 29)(20, 46)(21, 22)(23, 53)(25, 58)(26, 27)(28, 63)(30, 31)(32, 72)(34, 76)(35, 36)(37, 81)(38, 39)(41, 75)(42, 43)(44, 95)(45, 96)(47, 99)(48, 49)(50, 100)(51, 52)(54, 89)(55, 56)(57, 88)(59, 106)(60, 61)(62, 107)(64, 108)(65, 66)(67, 68)(69, 80)(70, 71)(73, 74)(78, 79)(82, 92)(83, 84)(86, 87)(90, 91)(93, 94)(97, 98)(103, 104)(109, 115)(110, 114)(111, 116)(112, 118)(113, 117)(119, 120)(121, 125)(122, 123)(124, 132)(126, 130)(127, 128)(129, 142)(131, 137)(133, 150)(134, 135)(136, 157)(138, 162)(139, 140)(141, 168)(143, 173)(144, 145)(146, 178)(147, 148)(151, 188)(152, 153)(154, 193)(155, 156)(158, 199)(159, 160)(161, 205)(163, 208)(165, 210)(166, 167)(169, 216)(170, 171)(174, 222)(175, 176)(177, 226)(179, 220)(180, 181)(182, 207)(183, 184)(185, 186)(187, 218)(189, 231)(190, 191)(192, 212)(195, 204)(196, 197)(200, 206)(201, 202)(203, 221)(209, 214)(211, 235)(213, 228)(215, 233)(217, 227)(219, 239)(223, 232)(225, 230)(229, 236)(234, 238)(237, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 109 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 134 127 130
-4 123 135 126 128
-5 124 136 141 131
-6 132 125 130 142
-7 143 133 123 126
-8 144 127 152 131
-9 145 137 128 153
-10 154 136 138 129
-11 155 125 139 130
-12 121 156 126 140
-13 132 157 168 137
-14 133 146 158 169
-15 144 134 147 170
-16 145 135 148 171
-17 136 149 172 129
-18 122 150 173 130
-19 121 123 167 151
-20 189 146 138 174
-21 190 159 139 175
-22 176 191 160 140
-23 192 161 141 152
-24 157 193 162 142
-25 143 158 183 163
-26 144 134 194 164
-27 145 135 194 164
-28 165 124 136 195
-29 122 166 188 125
-30 147 159 214 196
-31 209 148 160 197
-32 198 177 149 215
-33 199 178 150 216
-34 200 179 151 217
-35 180 141 152 218
-36 187 168 181 153
-37 154 182 174 219
-38 155 183 163 175
-39 176 156 184 208
-40 157 149 172 142
-41 143 158 180 218
-42 144 179 127 185
-43 220 145 128 186
-44 187 124 213 129
-45 177 221 234 161
-46 231 178 222 162
-47 179 223 163 185
-48 201 224 235 164
-49 211 202 224 164
-50 165 203 225 205
-51 166 225 195 206
-52 167 200 204 230
-53 168 212 205 153
-54 166 189 169 206
-55 170 196 207 229
-56 236 171 182 197
-57 198 148 171 172
-58 199 173 184 208
-59 154 155 139 174
-60 155 192 161 175
-61 176 156 212 205
-62 209 160 152 131
-63 132 210 157 204
-64 133 211 158 237
-65 134 212 203 127
-66 221 135 192 128
-67 201 180 228 240
-68 202 213 181 237
-69 212 203 236 182
-70 165 223 183 195
-71 210 232 204 184
-72 198 233 149 226
-73 180 227 228 186
-74 213 181 217 185
-75 187 199 181 173
-76 220 188 227 206
-77 231 189 169 216
-78 200 190 214 151
-79 209 188 191 206
-80 221 192 207 229
-81 222 193 239 207
-82 222 223 183 162
-83 224 193 194 162
-84 154 224 138 194
-85 225 204 195 230
-86 143 133 170 196
-87 171 150 173 197
-88 198 147 170 172
-89 231 167 200 216
-90 231 178 141 131
-91 189 146 168 137
-92 232 138 184 174
-93 233 139 238 175
-94 176 234 215 140
-95 132 228 218 142
-96 203 226 205 238
-97 187 213 239 207
-98 182 228 218 219
-99 220 232 186 208
-100 210 221 161 230
-101 209 190 191 214
-102 236 239 229 219
-103 223 148 163 197
-104 232 147 196 208
-105 220 179 227 217
-106 156 222 193 140
-107 137 159 214 153
-108 199 235 150 240
-109 178 226 216 238
-110 166 188 239 229
-111 210 211 237 230
-112 234 215 217 185
-113 191 202 160 237
-114 167 236 151 219
-115 177 146 234 169
-116 165 235 225 240
-117 190 201 159 240
-118 233 227 238 186
-119 177 201 235 215
-120 211 233 202 226
-121 1 12 2 19
-122 1 3 18 29
-123 1 4 7 19
-124 44 2 5 28
-125 11 1 6 29
-126 12 2 4 7
-127 3 8 42 65
-128 66 4 9 43
-129 44 2 17 10
-130 11 3 6 18
-131 90 5 62 8
-132 13 6 95 63
-133 14 7 64 86
-134 3 15 26 65
-135 66 4 16 27
-136 5 17 28 10
-137 13 91 107 9
-138 92 84 20 10
-139 11 59 93 21
-140 22 12 94 106
-141 23 35 90 5
-142 24 6 40 95
-143 25 7 41 86
-144 15 26 8 42
-145 16 27 9 43
-146 14 91 115 20
-147 88 15 104 30
-148 57 103 16 31
-149 17 72 40 32
-150 33 18 108 87
-151 34 78 114 19
-152 23 35 62 8
-153 36 107 9 53
-154 37 59 84 10
-155 11 59 38 60
-156 12 39 61 106
-157 13 24 40 63
-158 14 25 41 64
-159 117 30 107 21
-160 22 113 62 31
-161 23 45 100 60
-162 24 46 82 83
-163 25 47 103 38
-164 26 48 27 49
-165 70 28 50 116
-166 110 29 51 54
-167 89 114 19 52
-168 13 36 91 53
-169 77 14 115 54
-170 55 88 15 86
-171 56 57 16 87
-172 88 57 17 40
-173 58 18 75 87
-174 37 59 92 20
-175 38 60 93 21
-176 22 39 61 94
-177 45 115 119 32
-178 33 46 90 109
-179 34 47 105 42
-180 67 35 73 41
-181 68 36 74 75
-182 56 69 37 98
-183 25 70 38 82
-184 58 92 71 39
-185 112 47 74 42
-186 99 73 118 43
-187 44 36 75 97
-188 110 79 29 76
-189 77 91 20 54
-190 78 101 117 21
-191 22 79 101 113
-192 66 23 80 60
-193 24 81 83 106
-194 26 27 83 84
-195 70 28 51 85
-196 55 104 30 86
-197 56 103 31 87
-198 88 57 72 32
-199 33 58 75 108
-200 34 78 89 52
-201 67 48 117 119
-202 68 113 49 120
-203 69 50 96 65
-204 71 52 63 85
-205 50 61 96 53
-206 79 51 54 76
-207 55 80 81 97
-208 99 58 104 39
-209 79 101 62 31
-210 100 111 71 63
-211 111 49 64 120
-212 69 61 53 65
-213 44 68 74 97
-214 78 101 30 107
-215 112 94 119 32
-216 33 77 89 109
-217 34 112 105 74
-218 35 95 41 98
-219 102 37 114 98
-220 99 105 43 76
-221 66 45 100 80
-222 46 81 82 106
-223 47 70 103 82
-224 48 49 83 84
-225 50 116 51 85
-226 72 96 109 120
-227 105 73 118 76
-228 67 73 95 98
-229 55 110 80 102
-230 100 111 52 85
-231 77 89 46 90
-232 99 92 71 104
-233 93 72 118 120
-234 45 112 115 94
-235 48 116 108 119
-236 56 69 102 114
-237 111 68 113 64
-238 93 96 118 109
-239 110 102 81 97
-240 67 116 117 108
0

**************