C4graphGraph forms for C4 [ 240, 110 ] = SDD(UG(ATD[60,17]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 110 ] = SDD(UG(ATD[60,17])).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {119, 126}, {119, 123}, {113, 124}, {119, 122}, {119, 121}, {104, 124}, {104, 127}, {101, 125}, {100, 125}, {100, 121}, {82, 123}, {81, 126}, {58, 122}, {26, 127}, {9, 125}, {10, 126}, {11, 127}, {1, 121}, {1, 123}, {6, 124}, {1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124}, {4, 132}, {57, 185}, {5, 133}, {6, 134}, {16, 144}, {17, 145}, {18, 146}, {19, 147}, {20, 148}, {21, 149}, {22, 150}, {92, 220}, {111, 239}, {11, 138}, {76, 205}, {2, 128}, {3, 129}, {8, 138}, {107, 233}, {36, 167}, {75, 200}, {79, 204}, {97, 226}, {106, 233}, {85, 209}, {90, 222}, {107, 239}, {2, 135}, {68, 193}, {59, 190}, {7, 130}, {84, 209}, {86, 211}, {93, 216}, {61, 187}, {88, 222}, {93, 219}, {111, 233}, {8, 143}, {69, 194}, {99, 228}, {32, 168}, {72, 192}, {43, 163}, {98, 234}, {5, 140}, {48, 185}, {7, 142}, {38, 175}, {45, 164}, {36, 174}, {44, 166}, {80, 218}, {3, 136}, {66, 201}, {49, 186}, {47, 164}, {6, 141}, {8, 131}, {84, 223}, {86, 221}, {12, 128}, {13, 129}, {14, 130}, {15, 131}, {19, 159}, {26, 150}, {96, 236}, {105, 229}, {9, 132}, {67, 206}, {37, 168}, {83, 222}, {89, 212}, {7, 137}, {59, 181}, {4, 139}, {27, 148}, {110, 225}, {21, 133}, {70, 214}, {62, 174}, {22, 134}, {23, 135}, {24, 136}, {25, 137}, {26, 138}, {27, 139}, {28, 140}, {29, 141}, {30, 142}, {31, 143}, {61, 172}, {67, 210}, {76, 221}, {94, 207}, {97, 240}, {78, 220}, {117, 231}, {40, 187}, {117, 230}, {43, 184}, {81, 197}, {92, 200}, {13, 152}, {65, 212}, {54, 163}, {15, 154}, {45, 184}, {86, 195}, {94, 203}, {63, 169}, {72, 222}, {8, 159}, {68, 211}, {55, 160}, {47, 184}, {14, 153}, {39, 176}, {83, 196}, {55, 175}, {117, 237}, {79, 215}, {91, 195}, {94, 198}, {95, 199}, {5, 156}, {114, 235}, {65, 216}, {62, 167}, {56, 161}, {47, 182}, {7, 158}, {38, 191}, {40, 177}, {42, 179}, {46, 183}, {92, 197}, {37, 191}, {90, 192}, {6, 157}, {61, 166}, {57, 162}, {54, 173}, {12, 151}, {41, 178}, {45, 182}, {76, 215}, {71, 219}, {88, 196}, {11, 150}, {118, 235}, {59, 165}, {87, 201}, {4, 155}, {10, 149}, {20, 139}, {32, 191}, {43, 180}, {73, 214}, {79, 208}, {80, 207}, {23, 183}, {114, 210}, {24, 184}, {25, 185}, {26, 186}, {74, 234}, {110, 206}, {29, 188}, {68, 229}, {58, 155}, {31, 190}, {101, 196}, {102, 199}, {77, 239}, {30, 189}, {60, 159}, {43, 136}, {78, 237}, {27, 190}, {54, 147}, {73, 236}, {96, 197}, {14, 168}, {115, 213}, {15, 169}, {76, 234}, {28, 187}, {87, 240}, {52, 156}, {65, 233}, {64, 232}, {78, 230}, {96, 200}, {97, 201}, {105, 193}, {48, 153}, {117, 220}, {71, 238}, {54, 159}, {52, 157}, {50, 155}, {78, 231}, {12, 166}, {70, 236}, {13, 167}, {20, 190}, {31, 181}, {49, 154}, {53, 158}, {91, 240}, {24, 180}, {44, 128}, {72, 228}, {103, 203}, {9, 164}, {77, 224}, {51, 157}, {69, 235}, {10, 165}, {51, 156}, {98, 205}, {16, 160}, {57, 137}, {17, 161}, {18, 162}, {19, 163}, {28, 172}, {32, 144}, {33, 145}, {34, 146}, {83, 227}, {92, 236}, {111, 223}, {11, 186}, {112, 193}, {61, 140}, {58, 139}, {34, 147}, {95, 237}, {120, 202}, {114, 192}, {112, 194}, {106, 216}, {29, 174}, {60, 143}, {80, 227}, {91, 232}, {99, 208}, {30, 170}, {118, 194}, {59, 143}, {107, 223}, {109, 217}, {37, 144}, {45, 152}, {85, 224}, {87, 226}, {98, 215}, {27, 173}, {60, 138}, {35, 148}, {47, 152}, {89, 238}, {109, 218}, {20, 173}, {115, 202}, {46, 151}, {16, 170}, {17, 171}, {28, 166}, {31, 165}, {99, 217}, {105, 211}, {111, 213}, {24, 163}, {25, 162}, {44, 151}, {88, 227}, {109, 214}, {96, 220}, {15, 178}, {18, 172}, {115, 205}, {58, 132}, {19, 173}, {90, 228}, {106, 212}, {107, 213}, {60, 131}, {98, 221}, {46, 238}, {85, 149}, {91, 155}, {101, 164}, {102, 167}, {106, 171}, {36, 230}, {118, 180}, {50, 240}, {37, 231}, {84, 150}, {86, 148}, {99, 161}, {115, 176}, {21, 209}, {81, 149}, {109, 169}, {103, 162}, {14, 200}, {116, 178}, {22, 209}, {118, 177}, {32, 231}, {74, 141}, {93, 154}, {38, 238}, {22, 223}, {40, 225}, {75, 130}, {12, 198}, {13, 199}, {33, 235}, {103, 172}, {9, 196}, {64, 142}, {80, 158}, {82, 156}, {10, 197}, {23, 199}, {71, 151}, {48, 224}, {85, 133}, {51, 226}, {51, 225}, {66, 144}, {75, 153}, {84, 134}, {120, 171}, {77, 153}, {52, 225}, {110, 187}, {52, 226}, {53, 227}, {82, 133}, {62, 230}, {95, 135}, {16, 201}, {120, 161}, {18, 203}, {105, 176}, {50, 232}, {17, 202}, {56, 228}, {57, 229}, {97, 188}, {116, 169}, {82, 140}, {48, 239}, {110, 177}, {34, 194}, {35, 195}, {104, 136}, {33, 192}, {56, 217}, {101, 132}, {41, 203}, {112, 146}, {66, 160}, {108, 142}, {34, 193}, {114, 145}, {112, 147}, {67, 160}, {75, 168}, {100, 135}, {74, 174}, {100, 128}, {55, 210}, {63, 218}, {88, 189}, {108, 137}, {40, 206}, {63, 217}, {41, 207}, {42, 204}, {89, 191}, {93, 186}, {102, 129}, {36, 204}, {66, 170}, {56, 208}, {95, 183}, {49, 216}, {120, 145}, {63, 214}, {104, 129}, {39, 205}, {65, 171}, {64, 170}, {49, 219}, {44, 198}, {87, 188}, {67, 175}, {113, 157}, {90, 182}, {94, 178}, {39, 202}, {83, 189}, {116, 154}, {108, 130}, {41, 198}, {53, 218}, {35, 211}, {71, 183}, {50, 195}, {69, 180}, {38, 212}, {62, 204}, {39, 213}, {108, 158}, {33, 210}, {70, 181}, {68, 176}, {69, 177}, {77, 185}, {81, 165}, {21, 224}, {70, 179}, {46, 219}, {103, 146}, {30, 232}, {74, 188}, {89, 175}, {29, 234}, {116, 131}, {113, 134}, {55, 206}, {23, 237}, {53, 207}, {42, 208}, {73, 179}, {25, 229}, {113, 141}, {73, 181}, {79, 179}, {42, 215}, {64, 189}, {35, 221}, {72, 182}, {102, 152} }>;

(II) A more general form is to represent the graph as the orbit of {119, 126} under the group generated by the following permutations:

a: (3, 104)
b: (36, 62)
c: (39, 115)
d: (48, 77)
e: (69, 118)
f: (5, 82)
g: (65, 106)
h: (92, 96)
m: (2, 4)(3, 7)(5, 10)(6, 14)(8, 18)(11, 25)(12, 20)(13, 30)(15, 34)(16, 36)(19, 41)(22, 48)(23, 50)(24, 53)(26, 57)(27, 44)(28, 31)(29, 32)(33, 56)(35, 46)(37, 74)(38, 76)(39, 65)(40, 70)(42, 55)(43, 80)(45, 83)(47, 88)(49, 68)(51, 92)(52, 96)(54, 94)(58, 100)(59, 61)(60, 103)(62, 66)(63, 69)(64, 102)(67, 79)(71, 86)(73, 110)(75, 113)(77, 84)(78, 87)(81, 82)(89, 98)(91, 95)(93, 105)(97, 117)(99, 114)(104, 108)(106, 115)(109, 118)(112, 116)(121, 122)(123, 126)(124, 130)(125, 132)(127, 137)(128, 139)(129, 142)(131, 146)(133, 149)(134, 153)(135, 155)(136, 158)(138, 162)(140, 165)(141, 168)(143, 172)(144, 174)(145, 161)(147, 178)(148, 151)(150, 185)(152, 189)(154, 193)(156, 197)(157, 200)(159, 203)(160, 204)(163, 207)(164, 196)(166, 190)(167, 170)(169, 194)(171, 202)(173, 198)(175, 215)(176, 216)(177, 214)(179, 206)(180, 218)(181, 187)(182, 222)(183, 195)(184, 227)(186, 229)(188, 231)(191, 234)(192, 228)(199, 232)(201, 230)(205, 212)(208, 210)(209, 224)(211, 219)(213, 233)(217, 235)(220, 226)(221, 238)(223, 239)(225, 236)(237, 240)
n1: (40, 110)
a1: (72, 90)
b1: (4, 58)
c1: (41, 94)
d1: (11, 26)
e1: (22, 84)
f1: (38, 89)
g1: (19, 54)
h1: (29, 74)
m1: (56, 99)
n2: (30, 64)
a2: (35, 86)
b2: (51, 52)
c2: (16, 66)
d2: (9, 101)
e2: (2, 10)(3, 7)(4, 5)(6, 30)(8, 41)(9, 21)(11, 53)(12, 31)(13, 14)(16, 29)(18, 19)(20, 28)(22, 83)(23, 92)(24, 25)(26, 80)(27, 61)(32, 36)(33, 39)(35, 40)(37, 62)(38, 42)(43, 57)(44, 59)(45, 48)(46, 70)(47, 77)(49, 63)(50, 51)(52, 91)(54, 103)(55, 76)(56, 65)(58, 82)(60, 94)(64, 113)(66, 74)(67, 98)(68, 69)(71, 73)(72, 107)(75, 102)(79, 89)(81, 100)(84, 88)(85, 101)(86, 110)(90, 111)(93, 109)(95, 96)(99, 106)(104, 108)(105, 118)(114, 115)(121, 126)(122, 123)(124, 142)(125, 149)(127, 158)(128, 165)(129, 130)(131, 178)(132, 133)(134, 189)(135, 197)(136, 137)(138, 207)(139, 140)(141, 170)(143, 198)(144, 174)(145, 202)(146, 147)(148, 187)(150, 227)(151, 181)(152, 153)(154, 169)(155, 156)(157, 232)(159, 203)(160, 234)(161, 171)(162, 163)(164, 224)(166, 190)(167, 168)(172, 173)(175, 215)(176, 235)(177, 211)(179, 238)(180, 229)(182, 239)(183, 236)(184, 185)(186, 218)(188, 201)(191, 204)(192, 213)(193, 194)(195, 225)(196, 209)(199, 200)(205, 210)(206, 221)(208, 212)(214, 219)(216, 217)(220, 237)(222, 223)(226, 240)(228, 233)(230, 231)
f2: (24, 43)
g2: (31, 59)
h2: (32, 37)
m2: (8, 60)
n3: (10, 81)
a3: (15, 116)
b3: (42, 79)
c3: (1, 2, 23, 78, 92, 10)(3, 16, 63, 22, 50, 41)(4, 12, 13, 32, 70, 21)(5, 9, 46, 36, 14, 31)(6, 30, 15)(7, 8, 51, 83, 49, 29)(11, 87, 53)(17, 39, 68, 34, 69, 33)(18, 24, 55, 56, 107, 35)(19, 40, 72, 65, 76, 25)(20, 28, 45, 38, 42, 48)(26, 97, 80)(27, 61, 47, 89, 79, 77)(37, 73, 85, 58, 44, 102)(43, 67, 99, 111, 86, 103)(52, 88, 93, 74, 108, 60)(54, 110, 90, 106, 98, 57)(59, 82, 101, 71, 62, 75)(64, 116, 113)(66, 109, 84, 91, 94, 104)(81, 119, 100, 95, 117, 96)(105, 112, 118, 114, 120, 115)(121, 135, 237, 220, 197, 126)(122, 128, 199, 231, 236, 149)(123, 125, 183, 230, 200, 165)(124, 170, 169, 134, 232, 178)(127, 201, 218, 150, 240, 207)(129, 144, 214, 209, 155, 198)(130, 143, 156, 196, 219, 174)(131, 157, 189, 154, 141, 142)(132, 151, 167, 168, 181, 133)(136, 160, 217, 223, 195, 203)(137, 159, 225, 222, 216, 234)(138, 226, 227, 186, 188, 158)(139, 166, 152, 191, 179, 224)(140, 164, 238, 204, 153, 190)(145, 202, 176, 193, 194, 235)(146, 180, 210, 161, 213, 211)(147, 177, 192, 171, 205, 229)(148, 172, 184, 175, 208, 239)(162, 163, 206, 228, 233, 221)(173, 187, 182, 212, 215, 185)
d3: (87, 97)
e3: (68, 105)
f3: (70, 73)
g3: (45, 47)
h3: (50, 91)
m3: (34, 112)
n4: (83, 88)
a4: (12, 44)
b4: (14, 75)
c4: (23, 95)
d4: (21, 85)
e4: (28, 61)
f4: (46, 71)
g4: (20, 27)
h4: (25, 57)
m4: (107, 111)
n5: (49, 93)
a5: (18, 103)
b5: (63, 109)
c5: (76, 98)
d5: (2, 100)
e5: (6, 113)
f5: (78, 117)
g5: (55, 67)
h5: (53, 80)
m5: (17, 120)
n6: (7, 108)
a6: (13, 102)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 110 ]
240
-1 121 122 123 126
-2 121 135 125 128
-3 124 136 127 129
-4 132 122 155 139
-5 133 123 156 140
-6 134 124 157 141
-7 158 137 130 142
-8 143 159 138 131
-9 132 125 196 164
-10 165 126 149 197
-11 127 138 150 186
-12 198 166 128 151
-13 199 167 129 152
-14 200 168 130 153
-15 154 178 169 131
-16 144 201 170 160
-17 145 202 171 161
-18 146 203 172 162
-19 147 159 173 163
-20 190 148 139 173
-21 209 133 224 149
-22 209 134 223 150
-23 199 135 237 183
-24 136 180 184 163
-25 137 162 185 229
-26 127 138 150 186
-27 190 148 139 173
-28 187 166 172 140
-29 188 234 141 174
-30 232 189 170 142
-31 143 165 190 181
-32 231 144 168 191
-33 210 145 235 192
-34 146 147 193 194
-35 221 211 148 195
-36 167 204 174 230
-37 231 144 168 191
-38 212 191 238 175
-39 176 202 213 205
-40 187 177 225 206
-41 198 178 203 207
-42 179 204 215 208
-43 136 180 184 163
-44 198 166 128 151
-45 182 184 152 164
-46 183 238 151 219
-47 182 184 152 164
-48 224 239 185 153
-49 154 216 186 219
-50 155 232 195 240
-51 156 157 225 226
-52 156 157 225 226
-53 158 227 207 218
-54 147 159 173 163
-55 210 160 206 175
-56 161 217 228 208
-57 137 162 185 229
-58 132 122 155 139
-59 143 165 190 181
-60 143 159 138 131
-61 187 166 172 140
-62 167 204 174 230
-63 169 214 217 218
-64 232 189 170 142
-65 233 212 171 216
-66 144 201 170 160
-67 210 160 206 175
-68 176 211 193 229
-69 177 180 235 194
-70 179 181 214 236
-71 183 238 151 219
-72 222 192 182 228
-73 179 181 214 236
-74 188 234 141 174
-75 200 168 130 153
-76 221 234 215 205
-77 224 239 185 153
-78 220 231 237 230
-79 179 204 215 208
-80 158 227 207 218
-81 165 126 149 197
-82 133 123 156 140
-83 189 222 227 196
-84 209 134 223 150
-85 209 133 224 149
-86 221 211 148 195
-87 188 201 226 240
-88 189 222 227 196
-89 212 191 238 175
-90 222 192 182 228
-91 155 232 195 240
-92 220 200 236 197
-93 154 216 186 219
-94 198 178 203 207
-95 199 135 237 183
-96 220 200 236 197
-97 188 201 226 240
-98 221 234 215 205
-99 161 217 228 208
-100 121 135 125 128
-101 132 125 196 164
-102 199 167 129 152
-103 146 203 172 162
-104 124 136 127 129
-105 176 211 193 229
-106 233 212 171 216
-107 233 223 213 239
-108 158 137 130 142
-109 169 214 217 218
-110 187 177 225 206
-111 233 223 213 239
-112 146 147 193 194
-113 134 124 157 141
-114 210 145 235 192
-115 176 202 213 205
-116 154 178 169 131
-117 220 231 237 230
-118 177 180 235 194
-119 121 122 123 126
-120 145 202 171 161
-121 1 100 2 119
-122 1 58 4 119
-123 1 5 82 119
-124 3 113 104 6
-125 100 2 101 9
-126 1 81 119 10
-127 11 3 26 104
-128 44 12 100 2
-129 13 3 102 104
-130 14 7 75 108
-131 15 60 116 8
-132 101 58 4 9
-133 5 82 85 21
-134 22 113 6 84
-135 23 100 2 95
-136 24 3 104 43
-137 57 25 7 108
-138 11 26 60 8
-139 58 4 27 20
-140 5 82 28 61
-141 113 6 29 74
-142 7 30 64 108
-143 59 60 8 31
-144 66 37 16 32
-145 33 114 17 120
-146 34 112 103 18
-147 34 112 19 54
-148 35 27 20 86
-149 81 85 10 21
-150 11 22 26 84
-151 44 12 46 71
-152 45 13 47 102
-153 77 14 48 75
-154 15 49 93 116
-155 58 91 4 50
-156 5 82 51 52
-157 113 6 51 52
-158 80 7 53 108
-159 60 8 19 54
-160 55 66 67 16
-161 99 56 17 120
-162 57 25 103 18
-163 24 19 43 54
-164 45 101 47 9
-165 59 81 31 10
-166 44 12 28 61
-167 13 36 102 62
-168 14 37 75 32
-169 15 116 63 109
-170 66 16 30 64
-171 17 106 65 120
-172 103 28 61 18
-173 27 19 20 54
-174 36 29 62 74
-175 55 67 89 38
-176 68 115 39 105
-177 110 69 40 118
-178 15 94 116 41
-179 79 70 73 42
-180 24 69 118 43
-181 59 70 73 31
-182 45 90 47 72
-183 23 46 71 95
-184 45 24 47 43
-185 77 57 25 48
-186 11 26 49 93
-187 110 28 61 40
-188 29 74 97 87
-189 88 83 30 64
-190 59 27 20 31
-191 89 37 38 32
-192 33 90 114 72
-193 34 68 112 105
-194 34 112 69 118
-195 35 91 50 86
-196 88 101 83 9
-197 81 92 96 10
-198 44 12 94 41
-199 23 13 102 95
-200 14 92 96 75
-201 66 16 97 87
-202 115 17 39 120
-203 103 94 18 41
-204 79 36 62 42
-205 115 39 76 98
-206 55 110 67 40
-207 80 94 41 53
-208 99 56 79 42
-209 22 84 85 21
-210 33 55 67 114
-211 35 68 105 86
-212 89 38 106 65
-213 111 115 39 107
-214 70 73 63 109
-215 79 42 76 98
-216 49 93 106 65
-217 99 56 63 109
-218 80 63 53 109
-219 46 49 71 93
-220 78 92 117 96
-221 35 86 76 98
-222 88 90 72 83
-223 22 111 84 107
-224 77 48 85 21
-225 110 40 51 52
-226 51 52 97 87
-227 88 80 83 53
-228 99 56 90 72
-229 57 68 25 105
-230 78 36 62 117
-231 78 37 117 32
-232 91 50 30 64
-233 111 106 107 65
-234 29 74 76 98
-235 33 69 114 118
-236 70 92 73 96
-237 23 78 95 117
-238 89 46 38 71
-239 77 111 48 107
-240 91 50 97 87
0

**************