C4graphGraph forms for C4 [ 240, 111 ] = SDD(UG(ATD[60,15]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 111 ] = SDD(UG(ATD[60,15])).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {110, 125}, {100, 124}, {101, 125}, {102, 127}, {102, 124}, {101, 121}, {92, 127}, {94, 122}, {62, 123}, {49, 121}, {49, 123}, {49, 122}, {49, 126}, {42, 126}, {12, 126}, {13, 127}, {11, 125}, {1, 121}, {1, 123}, {6, 124}, {1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124}, {60, 188}, {66, 194}, {65, 193}, {64, 192}, {61, 189}, {87, 215}, {108, 236}, {109, 237}, {20, 149}, {29, 156}, {2, 128}, {56, 186}, {3, 129}, {4, 134}, {5, 135}, {6, 132}, {20, 150}, {21, 151}, {24, 154}, {25, 155}, {28, 158}, {29, 159}, {64, 195}, {73, 202}, {104, 235}, {8, 140}, {65, 197}, {9, 141}, {10, 142}, {98, 230}, {111, 235}, {7, 130}, {61, 184}, {26, 159}, {72, 205}, {83, 214}, {16, 150}, {19, 149}, {26, 156}, {27, 157}, {77, 203}, {88, 222}, {45, 170}, {60, 187}, {74, 205}, {86, 209}, {97, 230}, {105, 238}, {107, 236}, {85, 221}, {120, 240}, {88, 208}, {107, 227}, {3, 138}, {51, 186}, {16, 153}, {18, 155}, {20, 157}, {82, 219}, {84, 221}, {108, 229}, {52, 190}, {70, 204}, {76, 198}, {80, 218}, {83, 217}, {85, 223}, {2, 137}, {4, 143}, {8, 131}, {17, 154}, {44, 167}, {84, 223}, {97, 234}, {98, 233}, {104, 227}, {106, 225}, {7, 139}, {111, 227}, {9, 132}, {60, 177}, {54, 187}, {50, 191}, {11, 134}, {27, 150}, {6, 136}, {66, 204}, {14, 128}, {15, 129}, {22, 152}, {23, 153}, {27, 149}, {82, 220}, {89, 215}, {107, 229}, {10, 133}, {87, 216}, {108, 227}, {39, 183}, {114, 226}, {12, 158}, {118, 228}, {116, 230}, {48, 162}, {13, 159}, {16, 130}, {17, 131}, {26, 136}, {92, 207}, {41, 189}, {118, 226}, {64, 212}, {43, 191}, {5, 144}, {63, 170}, {57, 172}, {14, 155}, {29, 136}, {31, 138}, {71, 210}, {7, 145}, {114, 228}, {71, 209}, {69, 211}, {68, 210}, {78, 216}, {79, 217}, {18, 133}, {57, 174}, {54, 161}, {51, 164}, {30, 137}, {41, 190}, {43, 188}, {58, 162}, {25, 128}, {62, 167}, {78, 215}, {79, 214}, {8, 146}, {9, 147}, {36, 190}, {37, 191}, {91, 193}, {12, 151}, {118, 237}, {28, 135}, {81, 202}, {33, 189}, {56, 164}, {55, 171}, {35, 191}, {93, 193}, {53, 168}, {119, 234}, {90, 199}, {95, 194}, {10, 148}, {116, 234}, {113, 239}, {112, 238}, {91, 197}, {33, 190}, {120, 231}, {119, 232}, {114, 237}, {35, 188}, {80, 207}, {110, 206}, {113, 209}, {8, 169}, {22, 183}, {24, 185}, {97, 192}, {4, 166}, {69, 231}, {50, 144}, {5, 167}, {6, 164}, {9, 170}, {113, 210}, {21, 182}, {104, 203}, {107, 200}, {30, 186}, {53, 145}, {76, 232}, {79, 235}, {108, 200}, {111, 203}, {41, 140}, {59, 158}, {43, 142}, {98, 199}, {19, 181}, {65, 231}, {48, 150}, {76, 234}, {105, 207}, {115, 212}, {71, 239}, {97, 201}, {10, 163}, {48, 153}, {25, 176}, {74, 224}, {75, 225}, {26, 177}, {120, 211}, {32, 139}, {36, 143}, {29, 177}, {112, 220}, {63, 147}, {33, 140}, {35, 142}, {72, 229}, {14, 160}, {70, 232}, {62, 144}, {15, 161}, {109, 195}, {7, 168}, {23, 184}, {34, 141}, {75, 228}, {44, 156}, {45, 157}, {93, 236}, {119, 198}, {106, 219}, {16, 162}, {63, 141}, {48, 130}, {17, 163}, {22, 165}, {43, 152}, {82, 225}, {90, 233}, {99, 208}, {105, 218}, {42, 158}, {116, 192}, {112, 196}, {103, 211}, {33, 148}, {69, 240}, {37, 144}, {39, 146}, {95, 233}, {96, 214}, {106, 220}, {109, 219}, {18, 165}, {53, 130}, {24, 175}, {27, 172}, {31, 168}, {38, 145}, {19, 171}, {118, 206}, {20, 172}, {21, 173}, {83, 235}, {11, 178}, {62, 135}, {23, 174}, {25, 160}, {89, 224}, {74, 240}, {111, 213}, {15, 180}, {63, 132}, {52, 143}, {35, 152}, {40, 147}, {59, 135}, {114, 206}, {90, 230}, {91, 231}, {41, 148}, {116, 201}, {46, 147}, {42, 151}, {104, 213}, {13, 179}, {53, 139}, {47, 145}, {14, 176}, {80, 238}, {100, 164}, {46, 239}, {13, 207}, {19, 209}, {99, 161}, {86, 149}, {92, 159}, {22, 210}, {23, 211}, {44, 232}, {11, 206}, {12, 201}, {28, 218}, {67, 133}, {81, 151}, {40, 239}, {55, 240}, {45, 229}, {77, 133}, {103, 174}, {73, 131}, {115, 185}, {88, 146}, {24, 212}, {34, 238}, {32, 237}, {67, 142}, {94, 143}, {96, 177}, {73, 154}, {93, 137}, {72, 157}, {95, 138}, {77, 155}, {55, 224}, {67, 148}, {99, 180}, {57, 225}, {113, 169}, {94, 134}, {18, 203}, {59, 226}, {106, 179}, {70, 156}, {119, 173}, {17, 202}, {96, 187}, {98, 185}, {105, 178}, {68, 152}, {117, 169}, {115, 175}, {96, 188}, {110, 178}, {31, 194}, {61, 224}, {57, 228}, {120, 166}, {15, 208}, {21, 202}, {30, 193}, {103, 184}, {40, 200}, {67, 163}, {45, 205}, {44, 204}, {84, 180}, {85, 181}, {100, 132}, {36, 197}, {70, 167}, {68, 165}, {65, 160}, {59, 218}, {38, 199}, {74, 171}, {76, 173}, {78, 175}, {82, 179}, {84, 181}, {85, 180}, {87, 182}, {89, 184}, {64, 162}, {72, 170}, {80, 178}, {99, 129}, {32, 195}, {69, 166}, {66, 161}, {37, 198}, {42, 201}, {83, 176}, {86, 181}, {90, 185}, {89, 189}, {75, 174}, {101, 128}, {34, 196}, {51, 213}, {46, 200}, {109, 139}, {75, 172}, {117, 146}, {81, 182}, {93, 186}, {102, 129}, {47, 199}, {77, 165}, {110, 134}, {115, 154}, {60, 214}, {61, 215}, {73, 163}, {50, 217}, {52, 216}, {100, 136}, {101, 137}, {102, 138}, {56, 213}, {58, 212}, {71, 169}, {88, 183}, {92, 179}, {46, 223}, {52, 197}, {47, 222}, {30, 236}, {47, 221}, {68, 183}, {50, 198}, {54, 194}, {31, 233}, {117, 131}, {39, 208}, {51, 196}, {40, 223}, {95, 168}, {38, 222}, {78, 182}, {87, 175}, {94, 166}, {39, 222}, {117, 140}, {66, 187}, {58, 195}, {54, 204}, {58, 192}, {55, 205}, {32, 219}, {38, 221}, {91, 160}, {36, 216}, {56, 196}, {37, 217}, {81, 173}, {86, 171}, {112, 141}, {28, 226}, {34, 220}, {103, 153}, {79, 176} }>;

(II) A more general form is to represent the graph as the orbit of {110, 125} under the group generated by the following permutations:

a: (23, 103)
b: (84, 85)
c: (21, 81)
d: (14, 25)
e: (44, 70)
f: (57, 75)
g: (22, 68)
h: (65, 91)
m: (24, 115)
n1: (45, 72)
a1: (80, 105)
b1: (5, 62)
c1: (2, 5)(3, 9)(4, 12)(7, 20)(11, 28)(13, 34)(14, 37)(15, 40)(17, 33)(18, 35)(19, 38)(21, 36)(23, 58)(24, 61)(25, 50)(26, 51)(27, 53)(29, 56)(30, 44)(31, 45)(32, 57)(39, 71)(41, 73)(42, 94)(43, 77)(46, 99)(47, 86)(52, 81)(54, 107)(55, 90)(59, 110)(60, 104)(62, 101)(63, 102)(64, 103)(65, 76)(66, 108)(69, 97)(70, 93)(72, 95)(74, 98)(75, 109)(88, 113)(89, 115)(91, 119)(92, 112)(96, 111)(116, 120)(121, 123)(122, 126)(124, 132)(125, 135)(127, 141)(128, 144)(129, 147)(130, 150)(131, 140)(133, 142)(134, 158)(136, 164)(137, 167)(138, 170)(139, 172)(143, 151)(145, 149)(146, 169)(148, 163)(152, 165)(153, 162)(154, 189)(155, 191)(156, 186)(157, 168)(159, 196)(160, 198)(161, 200)(166, 201)(171, 199)(173, 197)(174, 195)(175, 215)(176, 217)(177, 213)(178, 218)(179, 220)(180, 223)(181, 221)(182, 216)(183, 210)(184, 212)(185, 224)(187, 227)(188, 203)(190, 202)(192, 211)(193, 232)(194, 229)(204, 236)(205, 233)(206, 226)(207, 238)(208, 239)(209, 222)(214, 235)(219, 225)(228, 237)(230, 240)(231, 234)
d1: (4, 94)
e1: (9, 63)
f1: (15, 99)
g1: (37, 50)
h1: (35, 43)
m1: (107, 108)
n2: (90, 98)
a2: (19, 86)
b2: (51, 56)
c2: (13, 92)
d2: (39, 88)
e2: (61, 89)
f2: (38, 47)
g2: (58, 64)
h2: (12, 42)
m2: (11, 110)
n3: (114, 118)
a3: (18, 77)
b3: (34, 112)
c3: (26, 29)
d3: (17, 73)
e3: (36, 52)
f3: (8, 117)
g3: (82, 106)
h3: (28, 59)
m3: (60, 96)
n4: (33, 41)
a4: (7, 53)
b4: (76, 119)
c4: (2, 4)(3, 7)(5, 12)(6, 16)(8, 22)(9, 20)(13, 32)(14, 36)(15, 38)(17, 35)(18, 33)(19, 40)(21, 37)(23, 51)(24, 60)(25, 52)(26, 58)(27, 63)(29, 64)(30, 69)(34, 57)(41, 77)(42, 62)(43, 73)(44, 97)(46, 86)(47, 99)(48, 100)(50, 81)(53, 102)(54, 90)(55, 107)(56, 103)(61, 104)(66, 98)(68, 117)(70, 116)(74, 108)(75, 112)(78, 79)(80, 114)(83, 87)(89, 111)(92, 109)(93, 120)(94, 101)(96, 115)(105, 118)(121, 122)(123, 126)(124, 130)(125, 134)(127, 139)(128, 143)(129, 145)(131, 152)(132, 150)(133, 148)(135, 158)(136, 162)(137, 166)(138, 168)(140, 165)(141, 172)(142, 163)(144, 151)(146, 183)(147, 149)(153, 164)(154, 188)(155, 190)(156, 192)(157, 170)(159, 195)(160, 197)(161, 199)(167, 201)(169, 210)(171, 200)(173, 198)(174, 196)(175, 214)(176, 216)(177, 212)(178, 206)(179, 219)(180, 221)(181, 223)(182, 217)(184, 213)(185, 187)(186, 211)(189, 203)(191, 202)(193, 231)(194, 233)(204, 230)(205, 229)(207, 237)(208, 222)(209, 239)(215, 235)(218, 226)(220, 225)(224, 227)(228, 238)(232, 234)(236, 240)
d4: (6, 100)
e4: (20, 27)
f4: (2, 101)
g4: (78, 87)
h4: (31, 95)
m4: (55, 74)
n5: (104, 111)
a5: (30, 93)
b5: (54, 66)
c5: (10, 67)
d5: (16, 48)
e5: (71, 113)
f5: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 19)(9, 24)(10, 26)(12, 30)(13, 33)(15, 39)(16, 20)(18, 44)(21, 51)(22, 54)(23, 57)(25, 62)(27, 48)(28, 65)(29, 67)(31, 71)(32, 55)(34, 78)(35, 60)(36, 80)(37, 79)(38, 84)(40, 90)(41, 92)(42, 93)(43, 96)(45, 58)(46, 98)(47, 85)(49, 101)(50, 83)(52, 105)(53, 86)(56, 81)(59, 91)(61, 82)(63, 115)(64, 72)(66, 68)(69, 114)(70, 77)(73, 100)(74, 109)(75, 103)(76, 104)(87, 112)(88, 99)(89, 106)(94, 110)(95, 113)(97, 107)(102, 117)(108, 116)(111, 119)(118, 120)(122, 125)(123, 128)(124, 131)(126, 137)(127, 140)(129, 146)(130, 149)(132, 154)(133, 156)(135, 160)(136, 163)(138, 169)(139, 171)(141, 175)(142, 177)(143, 178)(144, 176)(145, 181)(147, 185)(148, 159)(151, 186)(152, 187)(153, 172)(155, 167)(157, 162)(158, 193)(161, 183)(164, 202)(165, 204)(166, 206)(168, 209)(170, 212)(173, 213)(179, 189)(180, 222)(182, 196)(184, 225)(190, 207)(191, 214)(192, 229)(194, 210)(195, 205)(197, 218)(198, 235)(199, 223)(200, 230)(201, 236)(203, 232)(211, 228)(215, 220)(216, 238)(219, 224)(226, 231)(227, 234)(233, 239)(237, 240)
g5: (79, 83)
h5: (40, 46)
m5: (69, 120)
n6: (32, 109)
a6: (97, 116)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 111 ]
240
-1 121 122 123 126
-2 121 125 137 128
-3 124 127 138 129
-4 143 122 166 134
-5 144 123 167 135
-6 132 124 136 164
-7 145 168 139 130
-8 146 169 140 131
-9 132 147 170 141
-10 133 148 163 142
-11 134 178 125 206
-12 201 158 126 151
-13 179 159 127 207
-14 176 155 160 128
-15 180 161 129 208
-16 150 162 130 153
-17 154 202 163 131
-18 165 133 155 203
-19 209 181 149 171
-20 157 149 150 172
-21 202 182 151 173
-22 165 210 183 152
-23 211 184 174 153
-24 154 212 185 175
-25 176 155 160 128
-26 177 156 136 159
-27 157 149 150 172
-28 135 158 226 218
-29 177 156 136 159
-30 137 236 193 186
-31 233 168 138 194
-32 237 139 195 219
-33 189 190 148 140
-34 220 238 141 196
-35 188 191 152 142
-36 143 190 216 197
-37 198 144 191 217
-38 199 221 145 222
-39 222 146 183 208
-40 200 223 147 239
-41 189 190 148 140
-42 201 158 126 151
-43 188 191 152 142
-44 232 156 167 204
-45 157 170 205 229
-46 200 223 147 239
-47 199 221 145 222
-48 150 162 130 153
-49 121 122 123 126
-50 198 144 191 217
-51 213 196 164 186
-52 143 190 216 197
-53 145 168 139 130
-54 187 204 161 194
-55 224 171 205 240
-56 213 196 164 186
-57 225 172 228 174
-58 212 192 162 195
-59 135 158 226 218
-60 187 177 188 214
-61 189 224 215 184
-62 144 123 167 135
-63 132 147 170 141
-64 212 192 162 195
-65 231 160 193 197
-66 187 204 161 194
-67 133 148 163 142
-68 165 210 183 152
-69 231 166 211 240
-70 232 156 167 204
-71 209 210 169 239
-72 157 170 205 229
-73 154 202 163 131
-74 224 171 205 240
-75 225 172 228 174
-76 198 232 234 173
-77 165 133 155 203
-78 182 215 216 175
-79 176 235 214 217
-80 178 238 207 218
-81 202 182 151 173
-82 220 179 225 219
-83 176 235 214 217
-84 221 223 180 181
-85 221 223 180 181
-86 209 181 149 171
-87 182 215 216 175
-88 222 146 183 208
-89 189 224 215 184
-90 199 233 185 230
-91 231 160 193 197
-92 179 159 127 207
-93 137 236 193 186
-94 143 122 166 134
-95 233 168 138 194
-96 187 177 188 214
-97 201 234 192 230
-98 199 233 185 230
-99 180 161 129 208
-100 132 124 136 164
-101 121 125 137 128
-102 124 127 138 129
-103 211 184 174 153
-104 213 235 203 227
-105 178 238 207 218
-106 220 179 225 219
-107 200 236 227 229
-108 200 236 227 229
-109 237 139 195 219
-110 134 178 125 206
-111 213 235 203 227
-112 220 238 141 196
-113 209 210 169 239
-114 226 237 206 228
-115 154 212 185 175
-116 201 234 192 230
-117 146 169 140 131
-118 226 237 206 228
-119 198 232 234 173
-120 231 166 211 240
-121 1 2 101 49
-122 1 4 49 94
-123 1 5 49 62
-124 100 3 102 6
-125 11 110 2 101
-126 1 12 49 42
-127 13 3 102 92
-128 2 101 14 25
-129 99 3 102 15
-130 48 16 7 53
-131 17 73 117 8
-132 100 6 63 9
-133 77 67 18 10
-134 11 110 4 94
-135 59 5 28 62
-136 100 26 6 29
-137 2 101 93 30
-138 3 102 95 31
-139 7 53 32 109
-140 33 117 8 41
-141 34 112 63 9
-142 67 35 10 43
-143 36 4 94 52
-144 37 5 50 62
-145 47 38 7 53
-146 88 39 117 8
-147 46 40 63 9
-148 33 67 41 10
-149 27 19 20 86
-150 48 16 27 20
-151 12 81 42 21
-152 22 35 68 43
-153 23 48 103 16
-154 24 115 17 73
-155 77 14 25 18
-156 44 26 70 29
-157 45 27 72 20
-158 12 59 28 42
-159 13 26 92 29
-160 14 25 91 65
-161 66 99 15 54
-162 58 48 16 64
-163 67 17 73 10
-164 56 100 6 51
-165 22 77 68 18
-166 69 4 94 120
-167 44 70 5 62
-168 7 95 31 53
-169 113 71 117 8
-170 45 72 63 9
-171 55 19 74 86
-172 57 27 20 75
-173 81 119 21 76
-174 23 57 103 75
-175 78 24 115 87
-176 79 14 25 83
-177 26 60 29 96
-178 11 110 80 105
-179 13 92 82 106
-180 99 15 84 85
-181 84 19 85 86
-182 78 81 21 87
-183 22 88 68 39
-184 23 89 103 61
-185 24 90 115 98
-186 56 93 51 30
-187 66 60 96 54
-188 35 60 96 43
-189 33 89 61 41
-190 33 36 41 52
-191 35 37 50 43
-192 58 116 64 97
-193 91 93 30 65
-194 66 95 31 54
-195 58 64 32 109
-196 34 56 112 51
-197 36 91 52 65
-198 37 50 119 76
-199 90 47 38 98
-200 46 40 107 108
-201 12 116 42 97
-202 81 17 73 21
-203 77 111 104 18
-204 44 66 70 54
-205 55 45 72 74
-206 11 110 114 118
-207 13 80 92 105
-208 88 99 15 39
-209 113 71 19 86
-210 22 68 113 71
-211 23 69 103 120
-212 24 58 115 64
-213 56 111 104 51
-214 79 60 83 96
-215 78 89 61 87
-216 78 36 52 87
-217 79 37 50 83
-218 80 59 28 105
-219 82 106 32 109
-220 34 112 82 106
-221 47 38 84 85
-222 88 47 38 39
-223 46 40 84 85
-224 55 89 61 74
-225 57 82 106 75
-226 59 114 28 118
-227 111 104 107 108
-228 57 114 118 75
-229 45 72 107 108
-230 90 116 97 98
-231 69 91 65 120
-232 44 70 119 76
-233 90 95 31 98
-234 116 97 119 76
-235 111 79 104 83
-236 93 30 107 108
-237 114 118 32 109
-238 34 112 80 105
-239 46 113 71 40
-240 55 69 74 120
0

**************