C4graphGraph forms for C4 [ 240, 112 ] = XI(Rmap(120,13){6,6|10}_6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 112 ] = XI(Rmap(120,13){6,6|10}_6).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {48, 124}, {46, 127}, {37, 127}, {30, 124}, {31, 125}, {31, 122}, {19, 122}, {20, 121}, {20, 123}, {12, 126}, {12, 121}, {11, 125}, {8, 127}, {1, 121}, {3, 122}, {5, 124}, {7, 126}, {1, 123}, {4, 126}, {1, 122}, {2, 121}, {6, 125}, {1, 125}, {2, 126}, {3, 127}, {7, 123}, {2, 124}, {4, 123}, {82, 210}, {112, 240}, {111, 239}, {96, 224}, {99, 227}, {103, 231}, {107, 235}, {3, 130}, {109, 236}, {8, 137}, {10, 139}, {12, 141}, {16, 145}, {32, 161}, {72, 201}, {75, 202}, {6, 132}, {54, 180}, {49, 179}, {7, 133}, {10, 136}, {35, 161}, {85, 215}, {106, 232}, {2, 129}, {110, 237}, {4, 135}, {9, 138}, {17, 146}, {74, 201}, {82, 209}, {106, 233}, {107, 232}, {4, 128}, {61, 185}, {6, 130}, {13, 137}, {23, 147}, {89, 221}, {106, 238}, {3, 134}, {117, 240}, {111, 234}, {61, 184}, {15, 138}, {16, 149}, {18, 151}, {26, 159}, {86, 211}, {90, 223}, {107, 238}, {5, 131}, {111, 233}, {109, 235}, {53, 179}, {21, 147}, {74, 204}, {91, 221}, {100, 226}, {11, 140}, {119, 240}, {17, 150}, {25, 158}, {90, 221}, {39, 175}, {94, 214}, {6, 143}, {9, 128}, {11, 130}, {14, 132}, {45, 167}, {15, 133}, {79, 197}, {96, 234}, {97, 235}, {107, 225}, {5, 142}, {110, 229}, {51, 184}, {10, 129}, {19, 152}, {27, 144}, {80, 219}, {95, 212}, {5, 136}, {45, 160}, {20, 153}, {27, 150}, {28, 145}, {38, 171}, {41, 164}, {77, 192}, {81, 220}, {88, 213}, {97, 236}, {13, 131}, {76, 194}, {79, 193}, {29, 146}, {70, 201}, {63, 176}, {32, 175}, {94, 209}, {95, 208}, {108, 227}, {38, 182}, {115, 227}, {114, 226}, {69, 213}, {68, 212}, {67, 211}, {62, 174}, {61, 173}, {60, 172}, {39, 183}, {40, 184}, {41, 185}, {81, 193}, {96, 240}, {10, 155}, {118, 231}, {54, 167}, {52, 165}, {50, 163}, {47, 190}, {45, 188}, {12, 157}, {14, 159}, {19, 130}, {40, 185}, {43, 186}, {83, 194}, {8, 154}, {120, 234}, {64, 210}, {62, 172}, {57, 171}, {56, 170}, {33, 179}, {81, 195}, {89, 203}, {13, 158}, {120, 235}, {117, 230}, {53, 166}, {49, 162}, {46, 189}, {18, 129}, {92, 207}, {59, 175}, {113, 229}, {74, 222}, {75, 223}, {80, 196}, {82, 198}, {83, 199}, {87, 195}, {24, 141}, {113, 228}, {26, 143}, {91, 206}, {16, 134}, {70, 208}, {17, 135}, {24, 142}, {30, 136}, {34, 180}, {35, 181}, {76, 218}, {79, 217}, {7, 144}, {120, 239}, {118, 225}, {51, 164}, {44, 187}, {11, 156}, {25, 142}, {76, 219}, {90, 205}, {40, 176}, {58, 162}, {41, 177}, {42, 178}, {8, 145}, {120, 225}, {60, 165}, {48, 169}, {93, 196}, {18, 136}, {119, 237}, {118, 236}, {117, 239}, {28, 134}, {29, 135}, {71, 221}, {75, 209}, {9, 146}, {15, 148}, {23, 140}, {24, 131}, {55, 171}, {84, 200}, {9, 148}, {119, 234}, {14, 147}, {22, 139}, {78, 208}, {21, 138}, {112, 239}, {55, 168}, {43, 180}, {73, 214}, {31, 191}, {29, 188}, {114, 211}, {66, 227}, {42, 139}, {71, 230}, {72, 233}, {103, 198}, {108, 205}, {78, 236}, {22, 181}, {57, 154}, {26, 185}, {37, 134}, {44, 143}, {98, 193}, {63, 155}, {43, 142}, {13, 171}, {22, 176}, {23, 177}, {101, 195}, {108, 202}, {67, 228}, {24, 178}, {62, 149}, {96, 203}, {14, 162}, {36, 137}, {97, 204}, {102, 200}, {15, 160}, {115, 220}, {112, 223}, {70, 233}, {47, 128}, {71, 232}, {72, 231}, {73, 230}, {77, 226}, {78, 225}, {104, 199}, {93, 237}, {100, 212}, {103, 215}, {104, 216}, {42, 155}, {111, 222}, {59, 138}, {48, 129}, {85, 231}, {86, 228}, {90, 232}, {39, 148}, {40, 155}, {44, 159}, {100, 215}, {17, 165}, {110, 218}, {109, 217}, {32, 148}, {33, 149}, {34, 150}, {35, 151}, {106, 222}, {108, 216}, {23, 162}, {41, 156}, {43, 158}, {91, 238}, {99, 214}, {30, 168}, {31, 169}, {91, 237}, {22, 161}, {56, 143}, {42, 157}, {89, 238}, {92, 228}, {93, 229}, {94, 230}, {89, 224}, {119, 206}, {98, 219}, {101, 220}, {21, 175}, {25, 163}, {28, 166}, {29, 167}, {27, 160}, {98, 217}, {99, 216}, {16, 172}, {56, 132}, {36, 152}, {37, 153}, {38, 154}, {92, 224}, {105, 213}, {19, 174}, {114, 207}, {112, 205}, {47, 146}, {45, 144}, {95, 226}, {20, 170}, {113, 207}, {55, 137}, {26, 164}, {27, 165}, {36, 154}, {18, 173}, {113, 206}, {46, 145}, {105, 169}, {66, 131}, {118, 183}, {68, 133}, {69, 135}, {117, 182}, {69, 128}, {98, 167}, {67, 132}, {84, 156}, {110, 166}, {88, 144}, {93, 149}, {102, 174}, {116, 191}, {114, 190}, {109, 163}, {115, 189}, {49, 224}, {101, 180}, {100, 183}, {21, 192}, {99, 182}, {104, 189}, {65, 151}, {25, 193}, {84, 140}, {79, 150}, {86, 140}, {87, 141}, {97, 186}, {115, 168}, {64, 156}, {67, 159}, {66, 158}, {65, 157}, {30, 195}, {116, 169}, {88, 133}, {28, 194}, {116, 170}, {77, 147}, {85, 139}, {58, 229}, {101, 186}, {36, 199}, {68, 160}, {105, 141}, {33, 196}, {48, 213}, {35, 198}, {85, 176}, {87, 178}, {94, 187}, {34, 197}, {86, 177}, {88, 191}, {59, 211}, {33, 203}, {50, 217}, {55, 220}, {50, 222}, {65, 173}, {51, 223}, {80, 188}, {37, 200}, {116, 153}, {63, 210}, {54, 219}, {73, 164}, {34, 204}, {63, 209}, {52, 218}, {53, 218}, {92, 179}, {32, 208}, {56, 200}, {38, 214}, {39, 215}, {74, 186}, {75, 187}, {76, 188}, {103, 151}, {104, 152}, {49, 192}, {71, 182}, {64, 177}, {52, 197}, {73, 184}, {81, 163}, {57, 202}, {70, 181}, {65, 178}, {77, 190}, {57, 205}, {59, 207}, {58, 206}, {105, 157}, {83, 166}, {46, 216}, {52, 194}, {60, 196}, {51, 202}, {62, 199}, {60, 197}, {54, 204}, {69, 191}, {68, 190}, {58, 192}, {47, 212}, {64, 187}, {61, 198}, {50, 201}, {78, 181}, {80, 172}, {83, 174}, {44, 210}, {53, 203}, {84, 170}, {95, 161}, {102, 152}, {66, 189}, {72, 183}, {82, 173}, {87, 168}, {102, 153} }>;

(II) A more general form is to represent the graph as the orbit of {48, 124} under the group generated by the following permutations:

a: (6, 11)(14, 23)(26, 41)(44, 64)(56, 84)(67, 86)(132, 140)(143, 156)(159, 177)
b: (1, 2)(3, 5)(6, 10)(8, 13)(11, 18)(12, 20)(14, 22)(16, 43, 28, 25)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(31, 48)(33, 74, 53, 50)(34, 52, 79, 60)(36, 55)(39, 59)(41, 61)(42, 56)(44, 63)(46, 66)(49, 70)(54, 76, 98, 80)(58, 78)(62, 101, 83, 81)(64, 82)(65, 84)(67, 85)(72, 92)(77, 95)(86, 103)(87, 102)(89, 106)(91, 107)(93, 97, 110, 109)(96, 111)(100, 114)(104, 115)(105, 116)(113, 118)(119, 120)(122, 124)(123, 126)(125, 129)(127, 131)(130, 136)(132, 139)(134, 142)(138, 148)(140, 151)(141, 153)(143, 155)(145, 158)(147, 161)(149, 186, 166, 163)(150, 165)(152, 168)(154, 171)(156, 173)(157, 170)(159, 176)(162, 181)(164, 184)(167, 188)(172, 180, 194, 193)(174, 195)(177, 198)(178, 200)(179, 201)(183, 207)(187, 209)(190, 212)(191, 213)(192, 208)(196, 204, 218, 217)(199, 220)(203, 222)(206, 225)(211, 215)(216, 227)(221, 232)(224, 233)(228, 231)(229, 236)(235, 237)(239, 240)
c: (14, 67)(21, 59)(23, 86)(49, 92)(58, 113)(77, 114)(147, 211)(162, 228)(192, 207)
d: (50, 109)(70, 78)(72, 118)(74, 97)(106, 107)(111, 120)(201, 236)(222, 235)(225, 233)
e: (71, 117)(89, 96)(90, 112)(91, 119)(106, 111)(107, 120)(221, 240)(232, 239)(234, 238)
f: (26, 44)(40, 63)(41, 64)(51, 75)(61, 82)(73, 94)(164, 187)(184, 209)(185, 210)
g: (25, 43)(34, 79)(50, 74)(54, 98)(81, 101)(97, 109)(163, 186)(180, 193)(204, 217)
h: (2, 12)(5, 24)(10, 42)(18, 65)(30, 87)(48, 105)(124, 141)(129, 157)(136, 178)
m: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 51)(35, 53)(37, 48)(39, 58)(40, 60)(42, 62)(43, 57)(45, 64)(47, 67)(50, 71)(52, 61)(54, 75)(55, 66)(56, 69)(59, 77)(63, 80)(65, 83)(68, 86)(70, 89)(72, 91)(73, 79)(74, 90)(76, 82)(78, 96)(81, 99)(84, 88)(85, 93)(87, 104)(92, 95)(94, 98)(97, 112)(100, 113)(101, 108)(102, 105)(103, 110)(107, 111)(109, 117)(118, 119)(121, 122)(123, 125)(124, 127)(126, 130)(128, 132)(129, 134)(131, 137)(133, 140)(135, 143)(136, 145)(138, 147)(139, 149)(141, 152)(142, 154)(144, 156)(146, 159)(148, 162)(150, 164)(151, 166)(153, 169)(155, 172)(157, 174)(158, 171)(160, 177)(161, 179)(163, 182)(165, 185)(167, 187)(168, 189)(170, 191)(173, 194)(175, 192)(176, 196)(178, 199)(180, 202)(181, 203)(183, 206)(184, 197)(186, 205)(188, 210)(190, 211)(193, 214)(195, 216)(198, 218)(200, 213)(201, 221)(204, 223)(207, 226)(208, 224)(209, 219)(212, 228)(215, 229)(217, 230)(220, 227)(222, 232)(225, 234)(231, 237)(233, 238)(235, 239)(236, 240)
n1: (3, 6)(5, 10)(8, 26)(9, 17)(11, 19)(13, 40)(14, 16)(15, 27)(18, 30)(21, 60)(22, 25, 85, 43)(23, 62)(24, 42)(28, 67)(29, 47)(32, 79, 39, 34)(33, 49)(35, 81, 103, 101)(36, 41)(37, 56)(38, 51)(44, 46)(45, 68)(50, 72, 74, 70)(52, 59)(53, 92)(54, 95, 98, 100)(55, 61)(57, 73)(58, 93)(63, 66)(64, 104)(65, 87)(71, 90)(75, 99)(76, 114)(77, 80)(78, 109, 118, 97)(82, 115)(83, 86)(84, 102)(94, 108)(110, 113)(112, 117)(122, 125)(124, 129)(127, 143)(128, 135)(131, 155)(132, 134)(133, 144)(137, 185)(138, 165)(139, 142)(140, 174)(141, 157)(145, 159)(147, 172)(148, 150)(149, 162)(151, 195)(152, 156)(153, 170)(154, 164)(158, 176)(161, 193, 215, 180)(163, 231, 186, 181)(166, 228)(167, 212)(168, 173)(171, 184)(175, 197)(177, 199)(182, 223)(183, 204, 208, 217)(187, 216)(188, 190)(189, 210)(192, 196)(194, 211)(198, 220)(202, 214)(203, 224)(205, 230)(206, 237)(207, 218)(209, 227)(219, 226)(222, 233)(225, 235)
a1: (33, 93)(49, 58)(53, 110)(89, 91)(92, 113)(96, 119)(179, 229)(203, 237)(206, 224)
b1: (3, 19)(8, 36)(16, 62)(28, 83)(37, 102)(46, 104)(127, 152)(134, 174)(145, 199)
c1: (5, 30)(13, 55)(24, 87)(25, 81)(43, 101)(66, 115)(131, 168)(142, 195)(158, 220)
d1: (38, 57)(51, 73)(71, 90)(75, 94)(99, 108)(112, 117)(182, 205)(202, 214)(223, 230)
e1: (8, 46)(13, 66)(36, 104)(38, 99)(55, 115)(57, 108)(137, 189)(154, 216)(171, 227)
f1: (16, 28)(33, 53)(52, 60)(62, 83)(76, 80)(93, 110)(149, 166)(172, 194)(196, 218)
g1: (9, 47)(15, 68)(21, 77)(32, 95)(39, 100)(59, 114)(138, 190)(148, 212)(175, 226)
h1: (17, 29)(27, 45)(34, 54)(52, 76)(60, 80)(79, 98)(150, 167)(165, 188)(197, 219)
m1: (2, 4)(5, 17)(7, 12)(8, 16)(9, 10)(13, 60)(14, 26)(15, 42)(18, 47)(21, 40)(22, 32)(23, 41)(24, 27)(25, 34)(28, 46)(29, 30)(33, 57, 93, 38)(35, 95)(36, 62)(39, 85)(43, 79)(44, 67)(45, 87)(48, 69)(49, 51, 58, 73)(50, 74)(52, 66)(53, 108, 110, 99)(54, 81)(55, 80)(59, 63)(61, 77)(64, 86)(65, 68)(71, 89, 90, 91)(75, 113, 94, 92)(76, 115)(82, 114)(83, 104)(88, 105)(96, 112, 119, 117)(97, 109)(98, 101)(100, 103)(121, 123)(124, 135)(127, 134)(128, 129)(131, 165)(132, 143)(133, 157)(136, 146)(137, 172)(138, 155)(139, 148)(140, 156)(141, 144)(142, 150)(147, 185)(149, 154)(151, 212)(152, 174)(158, 197)(160, 178)(162, 164)(163, 204)(166, 216)(167, 195)(168, 188)(169, 191)(171, 196)(173, 190)(175, 176)(179, 202, 229, 214)(180, 193)(181, 208)(182, 203, 205, 237)(183, 231)(184, 192)(186, 217)(187, 228)(189, 194)(198, 226)(206, 230, 224, 223)(207, 209)(210, 211)(218, 227)(219, 220)(232, 238)(234, 239)
n2: (4, 7)(9, 15)(17, 27)(29, 45)(47, 68)(69, 88)(128, 133)(135, 144)(146, 160)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 112 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 134 127 130
-4 123 135 126 128
-5 124 136 131 142
-6 132 143 125 130
-7 133 144 123 126
-8 154 145 137 127
-9 146 148 138 128
-10 155 136 139 129
-11 156 125 140 130
-12 121 157 126 141
-13 158 137 171 131
-14 132 147 159 162
-15 133 148 138 160
-16 134 145 149 172
-17 165 135 146 150
-18 136 129 151 173
-19 122 130 152 174
-20 121 123 170 153
-21 147 192 138 175
-22 176 181 139 161
-23 177 147 140 162
-24 178 141 131 142
-25 158 193 163 142
-26 143 159 185 164
-27 165 144 160 150
-28 166 134 145 194
-29 188 167 135 146
-30 124 168 136 195
-31 122 125 169 191
-32 148 161 175 208
-33 179 203 149 196
-34 180 204 150 197
-35 198 181 161 151
-36 154 199 137 152
-37 134 200 127 153
-38 154 214 171 182
-39 148 215 183 175
-40 176 155 184 185
-41 177 156 185 164
-42 155 178 157 139
-43 158 180 142 186
-44 143 187 210 159
-45 144 188 167 160
-46 145 189 127 216
-47 146 190 212 128
-48 124 169 213 129
-49 179 224 192 162
-50 222 201 217 163
-51 223 202 184 164
-52 165 194 218 197
-53 166 179 203 218
-54 167 180 204 219
-55 220 168 137 171
-56 132 143 200 170
-57 154 202 171 205
-58 192 162 206 229
-59 211 138 207 175
-60 165 172 196 197
-61 198 173 184 185
-62 199 149 172 174
-63 176 209 155 210
-64 187 177 210 156
-65 178 157 151 173
-66 189 158 227 131
-67 132 211 159 228
-68 133 190 212 160
-69 135 191 213 128
-70 233 201 181 208
-71 221 232 182 230
-72 231 233 201 183
-73 214 184 164 230
-74 222 201 204 186
-75 187 209 223 202
-76 188 194 218 219
-77 190 147 192 226
-78 181 225 236 208
-79 193 150 217 197
-80 188 172 196 219
-81 220 193 195 163
-82 198 209 210 173
-83 166 199 194 174
-84 156 200 170 140
-85 176 231 215 139
-86 177 211 140 228
-87 178 168 195 141
-88 133 144 191 213
-89 221 224 203 238
-90 221 232 223 205
-91 221 237 238 206
-92 179 224 228 207
-93 149 237 196 229
-94 187 209 214 230
-95 212 226 161 208
-96 234 224 203 240
-97 235 236 204 186
-98 167 193 217 219
-99 214 182 216 227
-100 212 215 226 183
-101 220 180 195 186
-102 200 152 174 153
-103 198 231 215 151
-104 199 189 216 152
-105 157 169 213 141
-106 232 222 233 238
-107 232 235 225 238
-108 202 205 216 227
-109 235 236 217 163
-110 166 237 218 229
-111 222 233 234 239
-112 223 205 239 240
-113 206 228 207 229
-114 211 190 226 207
-115 220 189 168 227
-116 169 191 170 153
-117 182 239 240 230
-118 231 225 236 183
-119 234 237 206 240
-120 234 235 225 239
-121 1 12 2 20
-122 1 3 19 31
-123 1 4 7 20
-124 2 48 5 30
-125 11 1 6 31
-126 12 2 4 7
-127 46 3 37 8
-128 47 69 4 9
-129 2 48 18 10
-130 11 3 6 19
-131 66 13 24 5
-132 56 67 14 6
-133 88 68 15 7
-134 3 37 16 28
-135 69 4 17 29
-136 5 18 30 10
-137 55 13 36 8
-138 15 59 9 21
-139 22 85 42 10
-140 11 23 84 86
-141 12 24 105 87
-142 24 25 5 43
-143 44 56 26 6
-144 88 45 27 7
-145 46 16 28 8
-146 47 17 29 9
-147 77 23 14 21
-148 15 39 9 32
-149 33 16 93 62
-150 34 79 27 17
-151 35 103 18 65
-152 36 102 104 19
-153 102 37 116 20
-154 57 36 38 8
-155 40 63 42 10
-156 11 84 41 64
-157 12 105 42 65
-158 66 13 25 43
-159 44 67 14 26
-160 45 68 15 27
-161 22 35 95 32
-162 23 14 58 49
-163 25 81 50 109
-164 26 51 73 41
-165 27 60 17 52
-166 110 28 83 53
-167 45 29 54 98
-168 55 115 30 87
-169 48 105 116 31
-170 56 116 84 20
-171 55 13 57 38
-172 80 16 60 62
-173 82 61 18 65
-174 102 83 62 19
-175 59 39 21 32
-176 22 40 63 85
-177 23 41 64 86
-178 24 42 65 87
-179 33 92 49 53
-180 34 101 43 54
-181 22 78 35 70
-182 99 38 71 117
-183 100 39 72 118
-184 61 40 51 73
-185 26 61 40 41
-186 101 74 97 43
-187 44 94 64 75
-188 45 80 29 76
-189 66 46 104 115
-190 77 68 47 114
-191 88 69 116 31
-192 77 58 49 21
-193 79 25 81 98
-194 28 83 52 76
-195 101 81 30 87
-196 33 80 60 93
-197 34 79 60 52
-198 35 103 82 61
-199 36 104 83 62
-200 56 102 37 84
-201 70 50 72 74
-202 57 51 75 108
-203 33 89 96 53
-204 34 74 97 54
-205 57 90 112 108
-206 58 91 113 119
-207 113 59 92 114
-208 78 70 95 32
-209 82 94 63 75
-210 44 82 63 64
-211 67 59 114 86
-212 100 68 47 95
-213 88 69 48 105
-214 99 38 94 73
-215 100 103 39 85
-216 99 46 104 108
-217 79 50 98 109
-218 110 52 53 76
-219 80 54 76 98
-220 55 101 81 115
-221 89 90 91 71
-222 111 50 106 74
-223 90 112 51 75
-224 89 92 49 96
-225 78 107 118 120
-226 77 100 114 95
-227 66 99 115 108
-228 67 113 92 86
-229 110 58 113 93
-230 71 94 73 117
-231 103 72 85 118
-232 90 71 106 107
-233 111 70 72 106
-234 111 96 119 120
-235 107 97 109 120
-236 78 118 97 109
-237 110 91 93 119
-238 89 91 106 107
-239 111 112 117 120
-240 112 117 96 119
0

**************