C4graphGraph forms for C4 [ 240, 113 ] = SDD(R_30(17,16))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 113 ] = SDD(R_30(17,16)).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {119, 125}, {115, 125}, {119, 121}, {106, 122}, {106, 123}, {106, 121}, {106, 126}, {105, 124}, {105, 127}, {102, 122}, {91, 124}, {92, 123}, {66, 127}, {67, 126}, {12, 126}, {13, 127}, {11, 125}, {1, 121}, {1, 123}, {6, 124}, {1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124}, {39, 167}, {56, 184}, {53, 181}, {95, 223}, {111, 239}, {55, 182}, {2, 128}, {3, 129}, {4, 134}, {5, 135}, {20, 150}, {21, 151}, {24, 154}, {25, 155}, {28, 158}, {29, 159}, {44, 174}, {8, 139}, {96, 227}, {6, 130}, {93, 217}, {94, 218}, {99, 231}, {7, 130}, {64, 197}, {47, 170}, {9, 140}, {16, 149}, {18, 151}, {22, 147}, {110, 235}, {19, 149}, {23, 145}, {26, 156}, {27, 157}, {96, 230}, {10, 141}, {13, 138}, {17, 150}, {103, 224}, {36, 172}, {87, 223}, {97, 233}, {81, 216}, {104, 225}, {2, 136}, {72, 194}, {3, 137}, {4, 142}, {5, 143}, {8, 131}, {20, 159}, {21, 158}, {97, 234}, {101, 238}, {87, 219}, {99, 239}, {7, 138}, {54, 187}, {52, 185}, {9, 132}, {11, 134}, {78, 195}, {80, 221}, {101, 232}, {14, 128}, {15, 129}, {22, 152}, {23, 153}, {88, 214}, {10, 133}, {64, 207}, {56, 183}, {48, 191}, {18, 157}, {99, 236}, {65, 209}, {120, 232}, {28, 141}, {60, 173}, {29, 140}, {38, 183}, {83, 194}, {86, 199}, {16, 131}, {66, 209}, {62, 173}, {33, 178}, {54, 162}, {67, 215}, {17, 132}, {65, 212}, {83, 198}, {6, 144}, {57, 175}, {7, 145}, {75, 221}, {18, 133}, {49, 166}, {31, 136}, {40, 191}, {78, 217}, {103, 240}, {48, 168}, {72, 208}, {71, 223}, {30, 135}, {46, 183}, {82, 203}, {8, 146}, {70, 220}, {9, 147}, {43, 177}, {84, 206}, {39, 188}, {43, 176}, {34, 190}, {71, 219}, {32, 189}, {113, 236}, {79, 210}, {10, 148}, {38, 184}, {78, 208}, {82, 204}, {83, 205}, {20, 139}, {118, 233}, {117, 234}, {117, 213}, {5, 164}, {7, 166}, {9, 168}, {76, 237}, {21, 183}, {118, 212}, {24, 186}, {25, 187}, {28, 190}, {76, 238}, {82, 240}, {104, 202}, {6, 165}, {53, 150}, {10, 169}, {11, 175}, {64, 228}, {16, 180}, {17, 181}, {47, 139}, {19, 182}, {115, 214}, {31, 186}, {26, 188}, {116, 210}, {27, 189}, {4, 163}, {103, 192}, {45, 133}, {32, 137}, {75, 226}, {56, 146}, {68, 238}, {76, 230}, {79, 229}, {36, 143}, {120, 211}, {110, 197}, {12, 160}, {71, 235}, {69, 233}, {68, 232}, {15, 162}, {33, 140}, {35, 142}, {77, 224}, {22, 184}, {112, 222}, {23, 185}, {8, 167}, {69, 234}, {14, 161}, {29, 178}, {34, 141}, {40, 152}, {116, 196}, {113, 193}, {112, 192}, {47, 159}, {41, 153}, {42, 154}, {43, 155}, {44, 156}, {45, 157}, {46, 158}, {53, 132}, {117, 196}, {80, 226}, {24, 171}, {39, 148}, {94, 237}, {38, 146}, {88, 236}, {89, 237}, {25, 172}, {27, 174}, {30, 171}, {37, 144}, {99, 214}, {26, 173}, {82, 229}, {83, 228}, {88, 239}, {89, 238}, {107, 220}, {108, 219}, {111, 215}, {19, 170}, {120, 193}, {113, 200}, {112, 201}, {47, 150}, {24, 161}, {46, 151}, {100, 221}, {45, 151}, {111, 213}, {104, 211}, {12, 176}, {117, 201}, {13, 177}, {14, 178}, {15, 179}, {34, 158}, {87, 235}, {98, 222}, {90, 231}, {20, 170}, {118, 200}, {30, 160}, {33, 159}, {88, 231}, {120, 199}, {89, 230}, {33, 225}, {49, 240}, {84, 149}, {90, 155}, {103, 166}, {35, 225}, {95, 156}, {73, 141}, {85, 145}, {97, 165}, {26, 223}, {31, 218}, {32, 229}, {97, 164}, {102, 163}, {42, 236}, {74, 140}, {79, 137}, {101, 163}, {108, 170}, {110, 168}, {25, 222}, {19, 219}, {114, 186}, {66, 138}, {22, 220}, {23, 221}, {37, 239}, {109, 167}, {17, 218}, {40, 227}, {91, 144}, {43, 231}, {73, 133}, {61, 240}, {40, 230}, {65, 143}, {74, 132}, {98, 172}, {116, 187}, {28, 204}, {58, 234}, {57, 233}, {77, 157}, {101, 181}, {18, 195}, {49, 224}, {81, 128}, {86, 135}, {110, 191}, {70, 148}, {55, 228}, {114, 161}, {92, 143}, {107, 184}, {72, 156}, {14, 216}, {116, 162}, {15, 217}, {94, 136}, {51, 228}, {84, 131}, {85, 130}, {59, 227}, {61, 229}, {30, 199}, {118, 175}, {114, 171}, {74, 147}, {91, 130}, {98, 187}, {21, 207}, {50, 232}, {108, 182}, {12, 215}, {48, 235}, {92, 135}, {13, 209}, {115, 175}, {63, 227}, {62, 226}, {93, 129}, {11, 214}, {73, 148}, {100, 185}, {16, 206}, {60, 226}, {85, 138}, {96, 191}, {38, 198}, {69, 165}, {41, 201}, {73, 169}, {84, 180}, {102, 134}, {105, 137}, {46, 207}, {70, 167}, {69, 164}, {50, 211}, {42, 200}, {74, 168}, {59, 216}, {67, 160}, {77, 174}, {80, 179}, {81, 178}, {95, 188}, {52, 208}, {54, 210}, {94, 186}, {72, 174}, {104, 142}, {109, 139}, {63, 216}, {68, 163}, {102, 142}, {114, 154}, {105, 129}, {35, 202}, {112, 153}, {41, 192}, {90, 176}, {42, 193}, {113, 154}, {90, 177}, {52, 217}, {65, 172}, {57, 212}, {89, 180}, {34, 204}, {71, 169}, {44, 194}, {45, 195}, {80, 190}, {93, 179}, {109, 131}, {53, 218}, {58, 213}, {35, 211}, {36, 212}, {37, 213}, {77, 189}, {81, 161}, {49, 192}, {68, 181}, {63, 206}, {61, 204}, {60, 205}, {59, 202}, {57, 200}, {51, 194}, {31, 237}, {55, 197}, {54, 196}, {32, 210}, {37, 215}, {79, 189}, {95, 173}, {50, 193}, {67, 176}, {66, 177}, {62, 205}, {58, 201}, {85, 166}, {107, 152}, {36, 209}, {115, 134}, {63, 202}, {62, 203}, {59, 206}, {51, 198}, {50, 199}, {48, 197}, {75, 190}, {100, 145}, {61, 203}, {64, 182}, {86, 160}, {41, 222}, {119, 128}, {60, 203}, {52, 195}, {78, 185}, {55, 207}, {75, 179}, {76, 180}, {92, 164}, {96, 152}, {107, 147}, {98, 155}, {108, 149}, {70, 188}, {27, 224}, {39, 220}, {29, 225}, {44, 208}, {86, 171}, {100, 153}, {51, 205}, {58, 196}, {56, 198}, {87, 169}, {91, 165}, {93, 162}, {119, 136}, {109, 146}, {111, 144} }>;

(II) A more general form is to represent the graph as the orbit of {119, 125} under the group generated by the following permutations:

a: (14, 81)
b: (42, 113)
c: (50, 120)
d: (43, 90)
e: (54, 116)
f: (6, 91)
g: (38, 56)
h: (9, 40)(14, 31)(16, 20)(17, 59)(29, 76)(33, 89)(35, 68)(47, 84)(53, 63)(74, 96)(81, 94)(101, 104)(128, 136)(131, 139)(132, 227)(140, 230)(142, 163)(147, 152)(149, 170)(150, 206)(159, 180)(161, 186)(168, 191)(178, 237)(181, 202)(211, 232)(216, 218)(225, 238)
m: (1, 2)(3, 8)(4, 11)(5, 31)(6, 16)(7, 19)(9, 25)(10, 27)(12, 14)(13, 20)(15, 38)(17, 36)(21, 52)(22, 54)(23, 55)(24, 30)(26, 61)(28, 44)(29, 43)(32, 39)(33, 90)(34, 72)(35, 88)(37, 59)(40, 58)(41, 48)(42, 50)(46, 78)(47, 66)(49, 71)(51, 75)(53, 65)(56, 93)(57, 68)(63, 111)(64, 100)(67, 81)(69, 76)(70, 79)(73, 77)(74, 98)(80, 83)(82, 95)(84, 91)(85, 108)(86, 114)(87, 103)(89, 97)(92, 94)(96, 117)(99, 104)(101, 118)(102, 115)(105, 109)(106, 119)(107, 116)(110, 112)(113, 120)(122, 125)(123, 136)(124, 131)(126, 128)(127, 139)(129, 146)(130, 149)(132, 172)(133, 157)(135, 186)(137, 167)(138, 170)(140, 155)(141, 174)(142, 214)(143, 218)(144, 206)(145, 182)(147, 187)(148, 189)(150, 209)(151, 195)(152, 196)(153, 197)(154, 199)(156, 204)(158, 208)(159, 177)(160, 161)(162, 184)(163, 175)(164, 237)(165, 180)(166, 219)(168, 222)(169, 224)(173, 203)(176, 178)(179, 198)(181, 212)(183, 217)(185, 207)(188, 229)(190, 194)(191, 201)(192, 235)(200, 232)(202, 239)(205, 226)(210, 220)(211, 236)(213, 227)(215, 216)(221, 228)(223, 240)(225, 231)(230, 234)(233, 238)
n1: (29, 33)
a1: (15, 93)
b1: (5, 12)(6, 13)(25, 58)(36, 37)(43, 69)(57, 88)(65, 111)(66, 91)(67, 92)(90, 97)(98, 117)(99, 118)(123, 126)(124, 127)(130, 138)(135, 160)(143, 215)(144, 209)(155, 234)(164, 176)(165, 177)(172, 213)(175, 214)(187, 196)(200, 236)(201, 222)(212, 239)(231, 233)
c1: (26, 95)
d1: (20, 47)
e1: (28, 34)
f1: (16, 84)
g1: (76, 89)
h1: (3, 7)(15, 23)(32, 49)(41, 54)(79, 103)(85, 105)(93, 100)(112, 116)(124, 130)(127, 138)(129, 145)(137, 166)(153, 162)(179, 221)(185, 217)(187, 222)(189, 224)(192, 210)(196, 201)(229, 240)
m1: (88, 99)
n2: (60, 62)
a2: (22, 107)
b2: (41, 112)
c2: (2, 5)(3, 16, 54, 20)(4, 12)(6, 76, 58, 17)(7, 40, 41, 9)(8, 15, 19, 32)(10, 18)(11, 30)(13, 59, 25, 29)(14, 36)(21, 28)(22, 23, 48, 49)(24, 57)(26, 44)(27, 39, 52, 71)(31, 69)(33, 66, 63, 98)(34, 46)(35, 43)(37, 68)(38, 75, 55, 61)(45, 73)(47, 105, 84, 116)(50, 88)(51, 60)(53, 91, 89, 117)(56, 80, 64, 82)(62, 83)(65, 81)(67, 102)(70, 78, 87, 77)(72, 95)(74, 85, 96, 112)(79, 109, 93, 108)(86, 115)(90, 104)(92, 119)(94, 97)(99, 120)(100, 110, 103, 107)(101, 111)(114, 118)(121, 123)(122, 126)(124, 180, 196, 150)(125, 135)(127, 206, 187, 159)(128, 143)(129, 149, 210, 139)(130, 230, 201, 132)(131, 162, 170, 137)(134, 160)(136, 164)(138, 227, 222, 140)(141, 151)(142, 176)(144, 238, 213, 181)(145, 191, 192, 147)(146, 179, 182, 229)(148, 195, 169, 157)(152, 153, 168, 166)(154, 200)(155, 225, 177, 202)(161, 212)(163, 215)(165, 237, 234, 218)(167, 217, 219, 189)(171, 175)(172, 178, 209, 216)(173, 194)(174, 188, 208, 223)(183, 190, 207, 204)(184, 221, 197, 240)(185, 235, 224, 220)(186, 233)(193, 236)(198, 226, 228, 203)(199, 214)(211, 231)(232, 239)
d2: (19, 108)
e2: (3, 54)(6, 58)(7, 41)(13, 25)(66, 98)(85, 112)(91, 117)(105, 116)(124, 196)(127, 187)(129, 162)(130, 201)(137, 210)(138, 222)(144, 213)(145, 153)(155, 177)(165, 234)(166, 192)(172, 209)
f2: (52, 78)
g2: (71, 87)
h2: (10, 26)(18, 44)(21, 51)(28, 60)(34, 62)(45, 72)(46, 83)(73, 95)(133, 156)(141, 173)(148, 188)(151, 194)(157, 174)(158, 205)(169, 223)(183, 198)(190, 226)(195, 208)(203, 204)(207, 228)
m2: (55, 64)
n3: (68, 101)
a3: (8, 22)(9, 20)(16, 40)(19, 48)(47, 74)(84, 96)(107, 109)(108, 110)(131, 152)(132, 150)(139, 147)(140, 159)(146, 184)(149, 191)(167, 220)(168, 170)(180, 230)(182, 197)(206, 227)(219, 235)
b3: (40, 96)
c3: (75, 80)
d3: (4, 102)
e3: (58, 117)
f3: (21, 46)
g3: (12, 67)
h3: (59, 63)
m3: (23, 100)
n4: (35, 104)
a4: (30, 86)
b4: (2, 4)(14, 35)(24, 50)(31, 68)(81, 104)(94, 101)(102, 119)(114, 120)(121, 122)(125, 134)(128, 142)(136, 163)(154, 193)(161, 211)(171, 199)(178, 225)(181, 218)(186, 232)(202, 216)(237, 238)
c4: (9, 74)
d4: (15, 32)(23, 49)(27, 52)(61, 75)(77, 78)(79, 93)(80, 82)(100, 103)(129, 137)(145, 166)(153, 192)(157, 195)(162, 210)(174, 208)(179, 229)(185, 224)(189, 217)(190, 204)(203, 226)(221, 240)
e4: (48, 110)
f4: (39, 70)
g4: (25, 98)
h4: (49, 103)
m4: (51, 83)
n5: (14, 31)(17, 29)(33, 53)(35, 68)(59, 76)(63, 89)(81, 94)(101, 104)(128, 136)(132, 140)(142, 163)(150, 159)(161, 186)(178, 218)(180, 206)(181, 225)(202, 238)(211, 232)(216, 237)(227, 230)
a5: (5, 92)
b5: (57, 118)
c5: (10, 21)(26, 51)(38, 39)(46, 73)(55, 71)(56, 70)(64, 87)(83, 95)(133, 151)(141, 158)(146, 167)(148, 183)(156, 194)(169, 207)(173, 205)(182, 219)(184, 220)(188, 198)(197, 235)(223, 228)
d5: (69, 97)
e5: (18, 28)(27, 61)(34, 45)(44, 60)(52, 75)(62, 72)(77, 82)(78, 80)(133, 141)(151, 158)(156, 173)(157, 204)(174, 203)(179, 217)(185, 221)(189, 229)(190, 195)(194, 205)(208, 226)(224, 240)
f5: (37, 111)
g5: (13, 66)
h5: (31, 94)
m5: (8, 19)(22, 48)(38, 55)(39, 71)(56, 64)(70, 87)(107, 110)(108, 109)(131, 149)(139, 170)(146, 182)(147, 168)(148, 169)(152, 191)(167, 219)(183, 207)(184, 197)(188, 223)(198, 228)(220, 235)
n6: (7, 85)
a6: (5, 12)(36, 43)(37, 69)(57, 88)(65, 90)(67, 92)(97, 111)(99, 118)(123, 126)(135, 160)(143, 176)(144, 165)(155, 172)(164, 215)(175, 214)(177, 209)(200, 236)(212, 231)(213, 234)(233, 239)
b6: (11, 115)
c6: (61, 82)
d6: (18, 45)
e6: (2, 119)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 113 ]
240
-1 121 122 123 126
-2 121 125 136 128
-3 124 137 127 129
-4 122 134 163 142
-5 143 123 135 164
-6 165 144 124 130
-7 166 145 138 130
-8 167 146 139 131
-9 132 168 147 140
-10 133 169 148 141
-11 134 125 214 175
-12 176 126 160 215
-13 209 177 127 138
-14 178 128 161 216
-15 179 129 162 217
-16 180 149 206 131
-17 132 181 150 218
-18 133 157 151 195
-19 170 149 182 219
-20 159 170 139 150
-21 158 183 151 207
-22 220 147 184 152
-23 221 145 185 153
-24 154 171 161 186
-25 187 155 222 172
-26 188 156 223 173
-27 189 157 224 174
-28 190 158 204 141
-29 178 159 225 140
-30 199 135 160 171
-31 136 237 218 186
-32 210 189 137 229
-33 178 159 225 140
-34 190 158 204 141
-35 211 202 225 142
-36 143 209 212 172
-37 144 213 215 239
-38 198 146 183 184
-39 220 188 167 148
-40 191 227 152 230
-41 222 201 192 153
-42 154 200 236 193
-43 176 231 155 177
-44 156 194 174 208
-45 133 157 151 195
-46 158 183 151 207
-47 159 170 139 150
-48 168 191 235 197
-49 166 224 192 240
-50 199 232 211 193
-51 198 194 205 228
-52 195 217 185 208
-53 132 181 150 218
-54 187 210 162 196
-55 182 228 207 197
-56 198 146 183 184
-57 200 233 212 175
-58 201 234 213 196
-59 202 216 227 206
-60 203 226 205 173
-61 203 204 229 240
-62 203 226 205 173
-63 202 216 227 206
-64 182 228 207 197
-65 143 209 212 172
-66 209 177 127 138
-67 176 126 160 215
-68 232 181 238 163
-69 165 233 234 164
-70 220 188 167 148
-71 223 169 235 219
-72 156 194 174 208
-73 133 169 148 141
-74 132 168 147 140
-75 221 179 190 226
-76 180 237 238 230
-77 189 157 224 174
-78 195 217 185 208
-79 210 189 137 229
-80 221 179 190 226
-81 178 128 161 216
-82 203 204 229 240
-83 198 194 205 228
-84 180 149 206 131
-85 166 145 138 130
-86 199 135 160 171
-87 223 169 235 219
-88 231 214 236 239
-89 180 237 238 230
-90 176 231 155 177
-91 165 144 124 130
-92 143 123 135 164
-93 179 129 162 217
-94 136 237 218 186
-95 188 156 223 173
-96 191 227 152 230
-97 165 233 234 164
-98 187 155 222 172
-99 231 214 236 239
-100 221 145 185 153
-101 232 181 238 163
-102 122 134 163 142
-103 166 224 192 240
-104 211 202 225 142
-105 124 137 127 129
-106 121 122 123 126
-107 220 147 184 152
-108 170 149 182 219
-109 167 146 139 131
-110 168 191 235 197
-111 144 213 215 239
-112 222 201 192 153
-113 154 200 236 193
-114 154 171 161 186
-115 134 125 214 175
-116 187 210 162 196
-117 201 234 213 196
-118 200 233 212 175
-119 121 125 136 128
-120 199 232 211 193
-121 1 2 106 119
-122 1 102 4 106
-123 1 92 5 106
-124 3 91 6 105
-125 11 2 115 119
-126 1 12 67 106
-127 66 13 3 105
-128 2 14 81 119
-129 3 15 93 105
-130 91 6 7 85
-131 16 84 8 109
-132 17 74 9 53
-133 45 18 73 10
-134 11 102 4 115
-135 92 5 30 86
-136 2 94 31 119
-137 79 3 105 32
-138 66 13 7 85
-139 47 8 20 109
-140 33 29 74 9
-141 34 28 73 10
-142 35 102 4 104
-143 36 92 5 65
-144 111 91 37 6
-145 23 100 7 85
-146 56 38 8 109
-147 22 74 107 9
-148 70 39 73 10
-149 16 84 19 108
-150 47 17 20 53
-151 45 46 18 21
-152 22 40 96 107
-153 23 100 112 41
-154 24 113 114 42
-155 90 25 43 98
-156 44 26 72 95
-157 77 45 27 18
-158 34 46 28 21
-159 33 47 29 20
-160 12 67 30 86
-161 24 14 81 114
-162 15 93 116 54
-163 68 101 102 4
-164 69 92 5 97
-165 69 91 6 97
-166 103 49 7 85
-167 70 39 8 109
-168 110 48 74 9
-169 71 73 10 87
-170 47 19 20 108
-171 24 114 30 86
-172 25 36 65 98
-173 26 60 62 95
-174 44 77 27 72
-175 11 57 115 118
-176 12 67 90 43
-177 66 13 90 43
-178 33 14 81 29
-179 80 15 93 75
-180 89 16 84 76
-181 68 101 17 53
-182 55 19 64 108
-183 56 46 38 21
-184 22 56 38 107
-185 23 78 100 52
-186 24 114 94 31
-187 25 116 54 98
-188 26 70 39 95
-189 77 79 27 32
-190 34 80 28 75
-191 110 48 40 96
-192 112 103 49 41
-193 113 50 42 120
-194 44 72 83 51
-195 45 78 18 52
-196 58 116 117 54
-197 55 110 48 64
-198 56 38 83 51
-199 50 30 86 120
-200 57 113 118 42
-201 112 58 117 41
-202 35 59 104 63
-203 60 82 61 62
-204 34 82 28 61
-205 60 83 51 62
-206 59 16 84 63
-207 55 46 64 21
-208 44 78 72 52
-209 66 13 36 65
-210 79 116 32 54
-211 35 104 50 120
-212 57 36 118 65
-213 111 58 37 117
-214 11 88 99 115
-215 12 67 111 37
-216 14 59 81 63
-217 78 15 93 52
-218 17 94 31 53
-219 71 19 108 87
-220 22 70 39 107
-221 23 100 80 75
-222 112 25 41 98
-223 26 71 95 87
-224 77 103 27 49
-225 33 35 104 29
-226 80 60 62 75
-227 59 40 63 96
-228 55 83 51 64
-229 79 82 61 32
-230 89 40 96 76
-231 88 99 90 43
-232 68 101 50 120
-233 57 69 118 97
-234 58 69 117 97
-235 110 48 71 87
-236 88 99 113 42
-237 89 94 31 76
-238 89 68 101 76
-239 88 99 111 37
-240 103 49 82 61
0

**************