[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 114 ] =
SDD(UG(ATD[60,20])).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {105, 121}, {105, 123}, {105, 122}, {105, 125}, {87, 126}, {86,
125}, {87, 124}, {87, 121}, {78, 127}, {77, 127}, {78, 122}, {68, 123}, {58,
124}, {49, 126}, {8, 127}, {1, 121}, {3, 122}, {5, 124}, {7, 126}, {1, 123}, {1,
122}, {2, 121}, {6, 125}, {1, 125}, {2, 126}, {3, 127}, {2, 124}, {4, 123}, {72,
200}, {82, 210}, {90, 218}, {91, 219}, {95, 223}, {100, 228}, {3, 130}, {113,
240}, {59, 186}, {5, 132}, {7, 134}, {13, 140}, {39, 166}, {91, 218}, {96, 225},
{34, 160}, {73, 203}, {103, 229}, {108, 238}, {2, 129}, {115, 240}, {111, 236},
{65, 194}, {63, 188}, {50, 177}, {47, 172}, {6, 133}, {12, 143}, {27, 152}, {43,
168}, {93, 222}, {3, 135}, {67, 199}, {4, 128}, {19, 151}, {9, 140}, {110, 235},
{61, 184}, {46, 171}, {44, 169}, {11, 142}, {19, 150}, {31, 154}, {39, 162},
{74, 207}, {88, 221}, {103, 226}, {26, 156}, {118, 240}, {54, 176}, {38, 160},
{90, 220}, {104, 238}, {107, 237}, {4, 131}, {119, 240}, {62, 185}, {48, 183},
{45, 170}, {10, 141}, {23, 144}, {30, 153}, {13, 133}, {59, 179}, {14, 134},
{15, 135}, {71, 207}, {76, 196}, {79, 199}, {84, 220}, {92, 212}, {9, 128},
{110, 231}, {11, 130}, {24, 145}, {26, 147}, {28, 149}, {80, 217}, {97, 232},
{107, 226}, {109, 228}, {16, 154}, {59, 177}, {56, 178}, {17, 155}, {29, 151},
{33, 171}, {41, 163}, {81, 219}, {93, 215}, {103, 237}, {10, 129}, {60, 183},
{54, 189}, {25, 146}, {29, 150}, {42, 161}, {104, 227}, {4, 136}, {5, 137}, {6,
138}, {7, 139}, {8, 132}, {20, 152}, {38, 170}, {76, 192}, {88, 212}, {96, 236},
{106, 230}, {22, 155}, {65, 204}, {56, 181}, {45, 160}, {18, 156}, {111, 225},
{35, 173}, {84, 218}, {100, 234}, {107, 229}, {109, 227}, {12, 131}, {64, 207},
{51, 188}, {27, 148}, {70, 201}, {108, 227}, {55, 167}, {90, 202}, {92, 204},
{93, 205}, {64, 209}, {116, 229}, {113, 224}, {67, 210}, {95, 206}, {32, 178},
{38, 180}, {41, 186}, {120, 235}, {117, 230}, {115, 224}, {72, 219}, {88, 203},
{35, 183}, {120, 236}, {115, 231}, {73, 221}, {89, 205}, {5, 144}, {114, 231},
{112, 229}, {63, 170}, {7, 146}, {8, 157}, {10, 159}, {32, 181}, {70, 211}, {80,
197}, {94, 203}, {14, 152}, {113, 231}, {15, 153}, {29, 139}, {71, 209}, {79,
217}, {6, 145}, {120, 239}, {57, 174}, {50, 165}, {9, 158}, {33, 182}, {16,
136}, {118, 238}, {112, 232}, {59, 163}, {52, 172}, {17, 137}, {18, 138}, {19,
139}, {41, 177}, {20, 141}, {119, 238}, {117, 236}, {115, 234}, {114, 235}, {45,
180}, {22, 143}, {76, 213}, {81, 200}, {14, 148}, {119, 237}, {117, 239}, {53,
175}, {44, 182}, {41, 179}, {74, 208}, {89, 195}, {8, 147}, {118, 237}, {116,
239}, {113, 234}, {63, 164}, {57, 162}, {12, 151}, {21, 142}, {82, 201}, {95,
196}, {36, 184}, {116, 232}, {37, 185}, {39, 187}, {9, 148}, {51, 174}, {48,
173}, {11, 150}, {27, 134}, {73, 212}, {91, 198}, {17, 143}, {120, 230}, {119,
233}, {117, 235}, {43, 181}, {79, 209}, {84, 202}, {94, 192}, {10, 149}, {118,
233}, {112, 239}, {22, 137}, {15, 175}, {64, 224}, {16, 176}, {34, 130}, {14,
172}, {13, 174}, {56, 155}, {49, 146}, {18, 177}, {23, 179}, {40, 140}, {109,
201}, {25, 188}, {42, 143}, {20, 178}, {28, 186}, {97, 199}, {24, 191}, {71,
224}, {79, 232}, {106, 205}, {40, 128}, {100, 204}, {20, 189}, {116, 221}, {23,
190}, {39, 142}, {42, 131}, {58, 144}, {114, 216}, {72, 226}, {11, 160}, {99,
200}, {15, 163}, {24, 180}, {26, 182}, {34, 142}, {98, 206}, {12, 161}, {114,
223}, {112, 221}, {63, 146}, {55, 154}, {48, 157}, {21, 187}, {50, 156}, {13,
162}, {97, 209}, {100, 212}, {22, 167}, {110, 223}, {24, 169}, {26, 171}, {28,
173}, {80, 225}, {82, 227}, {33, 147}, {103, 213}, {108, 222}, {21, 166}, {111,
220}, {58, 137}, {25, 170}, {81, 226}, {90, 233}, {96, 211}, {99, 208}, {16,
164}, {34, 150}, {106, 222}, {57, 140}, {98, 215}, {17, 167}, {19, 165}, {40,
158}, {82, 228}, {92, 234}, {104, 222}, {110, 216}, {18, 165}, {49, 134}, {21,
162}, {27, 172}, {29, 165}, {50, 138}, {30, 166}, {31, 167}, {92, 228}, {97,
217}, {36, 158}, {49, 139}, {37, 159}, {108, 214}, {32, 155}, {93, 230}, {99,
216}, {40, 148}, {111, 211}, {57, 133}, {96, 220}, {25, 164}, {28, 161}, {33,
156}, {42, 151}, {84, 233}, {106, 215}, {35, 157}, {58, 132}, {104, 214}, {107,
213}, {23, 168}, {109, 210}, {68, 128}, {75, 141}, {89, 159}, {68, 131}, {86,
145}, {94, 153}, {77, 132}, {78, 135}, {83, 154}, {98, 168}, {68, 136}, {78,
130}, {85, 153}, {99, 175}, {101, 169}, {69, 149}, {77, 157}, {101, 180}, {66,
144}, {85, 135}, {75, 152}, {86, 133}, {30, 203}, {87, 129}, {98, 181}, {101,
191}, {83, 136}, {31, 195}, {61, 225}, {86, 138}, {30, 192}, {31, 193}, {77,
147}, {65, 158}, {89, 185}, {51, 210}, {52, 214}, {91, 185}, {44, 207}, {60,
223}, {74, 169}, {83, 176}, {38, 194}, {69, 161}, {62, 218}, {61, 217}, {35,
198}, {62, 219}, {54, 211}, {53, 208}, {43, 206}, {36, 194}, {37, 195}, {76,
171}, {88, 191}, {102, 129}, {36, 204}, {69, 173}, {37, 205}, {80, 184}, {95,
183}, {32, 202}, {66, 168}, {47, 197}, {46, 196}, {102, 141}, {53, 216}, {67,
174}, {46, 192}, {47, 193}, {45, 194}, {81, 190}, {52, 197}, {66, 179}, {56,
202}, {60, 206}, {102, 149}, {51, 199}, {55, 195}, {101, 145}, {52, 193}, {48,
198}, {70, 176}, {55, 193}, {72, 190}, {73, 191}, {75, 189}, {85, 163}, {83,
164}, {60, 196}, {62, 198}, {61, 197}, {94, 166}, {47, 214}, {65, 184}, {75,
178}, {102, 159}, {85, 175}, {46, 213}, {64, 187}, {70, 189}, {43, 215}, {66,
190}, {44, 208}, {71, 187}, {74, 182}, {53, 200}, {54, 201}, {69, 186}, {67,
188} }>;
(II) A more general form is to represent the graph as the orbit of {105, 121}
under the group generated by the following permutations:
a: (2, 87) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (62, 91)
c: (3, 78)
d: (54, 70)
e: (92, 100)
f: (5, 58)
g: (82, 109)
h: (23, 66)
m: (21, 39)
n1: (53, 99)
a1: (13, 57)
b1: (47, 52)
c1: (60, 95)
d1: (10, 102)
e1: (117, 120)
f1: (36, 65)
g1: (32, 56)
h1: (30, 94)
m1: (15, 85)
n2: (72, 81)
a2: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(12, 19)(13, 20)(15, 23)(16, 25)(18,
28)(21, 32)(22, 34)(24, 37)(26, 35)(27, 40)(29, 42)(30, 43)(31, 38)(33, 48)(36,
47)(39, 56)(44, 62)(45, 55)(46, 60)(49, 68)(50, 69)(51, 54)(52, 65)(53, 72)(57,
75)(58, 78)(63, 83)(64, 84)(66, 85)(67, 70)(71, 90)(73, 93)(74, 91)(76, 95)(79,
96)(81, 99)(86, 102)(87, 105)(88, 106)(89, 101)(92, 104)(94, 98)(97, 111)(100,
108)(103, 110)(107, 114)(112, 117)(113, 118)(115, 119)(116, 120)(122, 124)(123,
126)(125, 129)(127, 132)(128, 134)(130, 137)(131, 139)(133, 141)(135, 144)(136,
146)(138, 149)(140, 152)(142, 155)(143, 150)(145, 159)(147, 157)(153, 168)(154,
170)(156, 173)(158, 172)(160, 167)(161, 165)(162, 178)(163, 179)(166, 181)(169,
185)(171, 183)(174, 189)(175, 190)(176, 188)(177, 186)(180, 195)(182, 198)(184,
197)(187, 202)(191, 205)(192, 206)(193, 194)(199, 211)(201, 210)(203, 215)(204,
214)(207, 218)(208, 219)(209, 220)(212, 222)(213, 223)(216, 226)(217, 225)(221,
230)(224, 233)(227, 228)(229, 235)(231, 237)(232, 236)(234, 238)
b2: (6, 86)
c2: (79, 97)
d2: (25, 63)
e2: (64, 71)
f2: (84, 90)
g2: (2, 4)(3, 6)(5, 9)(7, 12)(8, 13)(10, 16)(11, 18)(14, 17)(15, 24)(20, 31)(21,
26)(22, 27)(23, 36)(25, 28)(30, 44)(32, 47)(33, 39)(34, 50)(35, 51)(37, 54)(38,
41)(40, 58)(42, 49)(43, 61)(45, 59)(46, 64)(48, 67)(52, 56)(53, 73)(55, 75)(57,
77)(60, 79)(62, 82)(63, 69)(65, 66)(68, 87)(70, 89)(71, 76)(72, 92)(74, 94)(78,
86)(80, 98)(81, 100)(83, 102)(84, 104)(85, 101)(88, 99)(90, 108)(91, 109)(93,
96)(95, 97)(103, 113)(106, 111)(107, 115)(110, 112)(114, 116)(121, 123)(122,
125)(124, 128)(126, 131)(127, 133)(129, 136)(130, 138)(132, 140)(134, 143)(135,
145)(137, 148)(139, 151)(141, 154)(142, 156)(144, 158)(146, 161)(147, 162)(149,
164)(150, 165)(152, 167)(153, 169)(155, 172)(157, 174)(159, 176)(160, 177)(163,
180)(166, 182)(168, 184)(170, 186)(171, 187)(173, 188)(175, 191)(178, 193)(179,
194)(181, 197)(183, 199)(185, 201)(189, 195)(190, 204)(192, 207)(196, 209)(198,
210)(200, 212)(202, 214)(203, 208)(205, 211)(206, 217)(213, 224)(215, 225)(216,
221)(218, 227)(219, 228)(220, 222)(223, 232)(226, 234)(229, 231)(230, 236)(233,
238)(235, 239)(237, 240)
h2: (93, 106)
m2: (31, 55)
n3: (14, 27)
a3: (11, 34)
b3: (43, 98)
c3: (12, 42)
d3: (18, 50)
e3: (4, 68)
f3: (61, 80)
g3: (17, 22)
h3: (104, 108)
m3: (103, 107)
n4: (20, 75)
a4: (7, 49)
b4: (24, 101)
c4: (113, 115)
d4: (44, 74)
e4: (19, 29)
f4: (28, 69)
g4: (51, 67)
h4: (37, 89)
m4: (118, 119)
n5: (9, 40)
a5: (41, 59)
b5: (8, 77)
c5: (35, 48)
d5: (26, 33)
e5: (38, 45)
f5: (16, 83)
g5: (73, 88)
h5: (112, 116)
m5: (46, 76)
n6: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 26)(20,
30)(22, 33)(23, 35)(25, 38)(27, 39)(28, 41)(31, 44)(32, 46)(34, 49)(36, 51)(37,
53)(40, 57)(42, 50)(43, 60)(45, 63)(47, 64)(48, 66)(52, 71)(54, 73)(55, 74)(56,
76)(58, 77)(59, 69)(61, 79)(62, 72)(65, 67)(68, 86)(70, 88)(75, 94)(78, 87)(80,
97)(81, 91)(82, 92)(83, 101)(84, 103)(85, 102)(89, 99)(90, 107)(93, 110)(95,
98)(96, 112)(100, 109)(104, 113)(106, 114)(108, 115)(111, 116)(121, 122)(123,
125)(124, 127)(126, 130)(128, 133)(129, 135)(131, 138)(134, 142)(136, 145)(137,
147)(139, 150)(141, 153)(143, 156)(144, 157)(146, 160)(148, 162)(149, 163)(151,
165)(152, 166)(154, 169)(155, 171)(158, 174)(159, 175)(161, 177)(164, 180)(167,
182)(168, 183)(172, 187)(173, 179)(176, 191)(178, 192)(181, 196)(184, 199)(185,
200)(188, 194)(189, 203)(190, 198)(193, 207)(195, 208)(197, 209)(201, 212)(202,
213)(204, 210)(205, 216)(211, 221)(214, 224)(215, 223)(218, 226)(220, 229)(222,
231)(225, 232)(227, 234)(230, 235)(233, 237)(236, 239)(238, 240)
a6: (110, 114)
b6: (96, 111)
C4[ 240, 114 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 135 127 130
-4 123 136 128 131
-5 132 144 124 137
-6 133 145 125 138
-7 134 146 126 139
-8 132 157 147 127
-9 158 148 128 140
-10 159 149 129 141
-11 160 150 130 142
-12 143 161 151 131
-13 133 140 162 174
-14 134 148 172 152
-15 135 163 153 175
-16 154 176 136 164
-17 143 155 167 137
-18 165 177 156 138
-19 165 139 150 151
-20 178 189 141 152
-21 187 166 162 142
-22 143 155 167 137
-23 144 168 179 190
-24 145 169 180 191
-25 188 146 170 164
-26 156 147 171 182
-27 134 148 172 152
-28 149 161 173 186
-29 165 139 150 151
-30 166 192 203 153
-31 154 167 193 195
-32 155 178 202 181
-33 156 147 171 182
-34 160 150 130 142
-35 198 157 183 173
-36 158 204 194 184
-37 159 205 195 185
-38 180 170 160 194
-39 187 166 162 142
-40 158 148 128 140
-41 177 179 163 186
-42 143 161 151 131
-43 168 181 215 206
-44 169 182 207 208
-45 180 170 160 194
-46 213 192 171 196
-47 214 193 172 197
-48 198 157 183 173
-49 134 146 126 139
-50 165 177 156 138
-51 188 199 210 174
-52 214 193 172 197
-53 200 216 175 208
-54 176 189 211 201
-55 154 167 193 195
-56 155 178 202 181
-57 133 140 162 174
-58 132 144 124 137
-59 177 179 163 186
-60 223 183 206 196
-61 225 184 217 197
-62 198 185 218 219
-63 188 146 170 164
-64 187 209 224 207
-65 158 204 194 184
-66 144 168 179 190
-67 188 199 210 174
-68 123 136 128 131
-69 149 161 173 186
-70 176 189 211 201
-71 187 209 224 207
-72 200 190 226 219
-73 221 212 191 203
-74 169 182 207 208
-75 178 189 141 152
-76 213 192 171 196
-77 132 157 147 127
-78 122 135 127 130
-79 209 199 232 217
-80 225 184 217 197
-81 200 190 226 219
-82 210 201 227 228
-83 154 176 136 164
-84 220 233 202 218
-85 135 163 153 175
-86 133 145 125 138
-87 121 124 126 129
-88 221 212 191 203
-89 159 205 195 185
-90 220 233 202 218
-91 198 185 218 219
-92 212 234 204 228
-93 222 215 205 230
-94 166 192 203 153
-95 223 183 206 196
-96 220 211 225 236
-97 209 199 232 217
-98 168 181 215 206
-99 200 216 175 208
-100 212 234 204 228
-101 145 169 180 191
-102 159 149 129 141
-103 213 226 237 229
-104 222 214 227 238
-105 121 122 123 125
-106 222 215 205 230
-107 213 226 237 229
-108 222 214 227 238
-109 210 201 227 228
-110 231 223 235 216
-111 220 211 225 236
-112 221 232 239 229
-113 231 234 224 240
-114 231 223 235 216
-115 231 234 224 240
-116 221 232 239 229
-117 235 236 239 230
-118 233 237 238 240
-119 233 237 238 240
-120 235 236 239 230
-121 1 2 105 87
-122 1 78 3 105
-123 1 68 4 105
-124 2 58 5 87
-125 1 6 105 86
-126 2 49 7 87
-127 77 78 3 8
-128 68 4 40 9
-129 2 102 10 87
-130 11 34 78 3
-131 12 68 4 42
-132 77 58 5 8
-133 13 57 6 86
-134 14 27 49 7
-135 78 3 15 85
-136 68 4 16 83
-137 22 58 5 17
-138 6 50 18 86
-139 49 7 29 19
-140 13 57 40 9
-141 102 20 75 10
-142 11 34 39 21
-143 22 12 17 42
-144 66 23 58 5
-145 24 101 6 86
-146 25 49 7 63
-147 33 77 26 8
-148 14 27 40 9
-149 69 102 28 10
-150 11 34 29 19
-151 12 29 19 42
-152 14 27 20 75
-153 15 94 30 85
-154 55 16 83 31
-155 22 56 17 32
-156 33 26 50 18
-157 77 35 48 8
-158 36 40 9 65
-159 89 102 37 10
-160 11 34 45 38
-161 12 69 28 42
-162 13 57 39 21
-163 15 59 41 85
-164 25 16 83 63
-165 50 18 29 19
-166 39 94 30 21
-167 22 55 17 31
-168 66 23 43 98
-169 44 24 101 74
-170 45 25 38 63
-171 33 46 26 76
-172 14 47 27 52
-173 35 69 48 28
-174 67 13 57 51
-175 99 15 85 53
-176 70 16 83 54
-177 59 50 18 41
-178 56 20 75 32
-179 66 23 59 41
-180 45 24 101 38
-181 56 32 43 98
-182 33 44 26 74
-183 35 48 60 95
-184 36 80 61 65
-185 89 91 37 62
-186 69 59 28 41
-187 71 39 64 21
-188 67 25 51 63
-189 70 20 75 54
-190 66 23 81 72
-191 88 24 101 73
-192 46 94 30 76
-193 55 47 52 31
-194 45 36 38 65
-195 55 89 37 31
-196 46 60 95 76
-197 47 80 61 52
-198 35 91 48 62
-199 67 79 51 97
-200 99 81 72 53
-201 70 82 54 109
-202 56 90 84 32
-203 88 94 73 30
-204 100 36 92 65
-205 89 37 93 106
-206 60 95 43 98
-207 44 71 74 64
-208 44 99 74 53
-209 79 71 64 97
-210 67 82 51 109
-211 111 70 96 54
-212 88 100 92 73
-213 46 103 107 76
-214 47 104 52 108
-215 93 106 43 98
-216 99 110 114 53
-217 79 80 61 97
-218 90 91 62 84
-219 91 81 72 62
-220 111 90 84 96
-221 88 112 116 73
-222 93 104 106 108
-223 110 114 60 95
-224 113 71 115 64
-225 111 80 61 96
-226 81 103 72 107
-227 82 104 108 109
-228 100 92 82 109
-229 112 103 116 107
-230 93 106 117 120
-231 110 113 114 115
-232 79 112 116 97
-233 90 84 118 119
-234 100 113 92 115
-235 110 114 117 120
-236 111 117 96 120
-237 103 107 118 119
-238 104 118 108 119
-239 112 116 117 120
-240 113 115 118 119
0