[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 115 ] =
XI(Rmap(120,39){20,6|4}_30).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {67, 127}, {49, 124}, {45, 127}, {32, 122}, {32, 125}, {31, 124},
{19, 122}, {20, 121}, {20, 123}, {12, 126}, {12, 121}, {11, 125}, {8, 127}, {1,
121}, {3, 122}, {5, 124}, {7, 126}, {1, 123}, {4, 126}, {1, 122}, {2, 121}, {6,
125}, {1, 125}, {2, 126}, {3, 127}, {7, 123}, {2, 124}, {4, 123}, {102, 230},
{111, 239}, {103, 231}, {108, 236}, {3, 130}, {113, 240}, {8, 137}, {10, 139},
{12, 141}, {16, 145}, {38, 167}, {85, 212}, {90, 219}, {101, 228}, {106, 235},
{6, 132}, {64, 194}, {7, 133}, {10, 136}, {33, 163}, {39, 165}, {109, 239}, {2,
129}, {65, 194}, {4, 135}, {9, 138}, {17, 146}, {109, 238}, {4, 128}, {6, 130},
{3, 134}, {110, 235}, {62, 187}, {48, 181}, {18, 151}, {26, 159}, {98, 231}, {5,
131}, {110, 232}, {16, 150}, {81, 215}, {104, 238}, {11, 140}, {97, 230}, {94,
214}, {102, 238}, {6, 143}, {72, 193}, {53, 188}, {9, 128}, {11, 130}, {104,
225}, {14, 132}, {50, 184}, {15, 133}, {32, 170}, {76, 198}, {5, 142}, {46,
165}, {10, 129}, {19, 152}, {25, 149}, {71, 203}, {28, 144}, {29, 145}, {30,
146}, {87, 219}, {109, 225}, {5, 136}, {20, 153}, {27, 150}, {43, 166}, {13,
131}, {69, 203}, {63, 177}, {38, 168}, {39, 169}, {74, 196}, {86, 216}, {100,
234}, {106, 228}, {107, 229}, {108, 226}, {47, 160}, {49, 190}, {79, 192}, {92,
211}, {102, 233}, {103, 232}, {35, 179}, {50, 162}, {81, 193}, {83, 195}, {19,
130}, {116, 229}, {113, 224}, {62, 175}, {60, 173}, {58, 171}, {56, 169}, {48,
161}, {8, 154}, {118, 228}, {114, 224}, {67, 209}, {61, 175}, {47, 189}, {9,
155}, {12, 158}, {13, 159}, {41, 187}, {77, 223}, {88, 202}, {93, 207}, {18,
129}, {61, 174}, {57, 170}, {53, 166}, {88, 203}, {90, 201}, {24, 140}, {65,
213}, {25, 141}, {26, 142}, {27, 143}, {74, 222}, {73, 220}, {120, 237}, {89,
204}, {91, 206}, {101, 240}, {10, 156}, {11, 157}, {16, 134}, {17, 135}, {33,
183}, {42, 188}, {78, 216}, {82, 196}, {7, 144}, {116, 227}, {63, 168}, {59,
172}, {51, 164}, {31, 136}, {43, 188}, {90, 205}, {95, 200}, {28, 132}, {59,
163}, {8, 145}, {54, 175}, {52, 173}, {30, 135}, {44, 181}, {73, 208}, {14,
148}, {119, 237}, {118, 236}, {116, 238}, {52, 174}, {15, 149}, {17, 139}, {18,
136}, {34, 184}, {41, 179}, {77, 215}, {106, 240}, {9, 146}, {119, 236}, {68,
223}, {29, 134}, {38, 189}, {43, 176}, {45, 182}, {21, 137}, {70, 218}, {69,
217}, {22, 138}, {23, 139}, {40, 180}, {84, 200}, {36, 185}, {116, 233}, {70,
219}, {82, 207}, {13, 147}, {63, 161}, {42, 180}, {87, 201}, {32, 191}, {112,
239}, {72, 215}, {56, 167}, {37, 186}, {46, 142}, {113, 209}, {71, 231}, {70,
230}, {56, 152}, {54, 150}, {48, 144}, {47, 143}, {13, 172}, {52, 149}, {15,
174}, {17, 176}, {19, 178}, {22, 180}, {40, 138}, {96, 194}, {14, 173}, {67,
224}, {18, 177}, {73, 237}, {120, 220}, {119, 211}, {112, 212}, {100, 192},
{107, 207}, {58, 159}, {120, 221}, {21, 179}, {79, 233}, {23, 176}, {117, 210},
{74, 226}, {115, 218}, {90, 240}, {118, 220}, {117, 223}, {44, 128}, {24, 181},
{57, 148}, {48, 157}, {31, 178}, {14, 160}, {111, 193}, {15, 161}, {37, 139},
{79, 225}, {25, 182}, {69, 234}, {30, 177}, {97, 206}, {49, 129}, {110, 222},
{93, 237}, {97, 209}, {98, 210}, {107, 219}, {108, 220}, {109, 221}, {38, 151},
{40, 153}, {42, 155}, {44, 157}, {46, 159}, {82, 227}, {88, 233}, {93, 236},
{99, 210}, {105, 216}, {107, 218}, {33, 147}, {111, 221}, {36, 150}, {80, 226},
{81, 227}, {85, 231}, {89, 235}, {108, 222}, {23, 164}, {55, 132}, {41, 154},
{45, 158}, {89, 234}, {103, 212}, {106, 217}, {81, 229}, {120, 204}, {94, 234},
{22, 163}, {87, 226}, {94, 235}, {96, 213}, {102, 211}, {30, 168}, {31, 169},
{34, 148}, {35, 149}, {89, 239}, {21, 162}, {110, 217}, {43, 156}, {55, 143},
{80, 232}, {104, 208}, {35, 154}, {115, 202}, {58, 131}, {37, 156}, {88, 225},
{103, 222}, {22, 172}, {115, 201}, {63, 133}, {29, 167}, {92, 230}, {27, 160},
{118, 205}, {91, 224}, {26, 166}, {114, 206}, {113, 205}, {112, 204}, {28, 160},
{45, 145}, {99, 223}, {24, 165}, {28, 161}, {100, 217}, {44, 146}, {93, 227},
{104, 214}, {16, 175}, {20, 171}, {39, 152}, {87, 232}, {76, 140}, {99, 163},
{72, 138}, {95, 157}, {68, 135}, {80, 147}, {68, 128}, {115, 183}, {67, 134},
{75, 141}, {86, 144}, {95, 153}, {100, 162}, {78, 137}, {92, 148}, {96, 168},
{112, 186}, {111, 164}, {84, 152}, {114, 191}, {119, 185}, {54, 228}, {72, 155},
{86, 133}, {95, 140}, {21, 192}, {23, 193}, {85, 131}, {105, 191}, {97, 185},
{114, 170}, {98, 186}, {24, 194}, {25, 195}, {29, 198}, {64, 155}, {85, 142},
{66, 158}, {75, 151}, {98, 190}, {65, 156}, {26, 196}, {117, 171}, {59, 229},
{27, 197}, {35, 195}, {40, 200}, {36, 197}, {57, 216}, {34, 192}, {49, 210},
{91, 184}, {51, 215}, {105, 141}, {34, 199}, {64, 165}, {94, 187}, {55, 209},
{84, 178}, {50, 218}, {53, 221}, {47, 198}, {77, 164}, {60, 214}, {33, 202},
{66, 169}, {60, 208}, {117, 153}, {74, 166}, {101, 137}, {42, 196}, {62, 208},
{82, 188}, {83, 189}, {66, 178}, {71, 183}, {99, 147}, {37, 212}, {65, 176},
{76, 189}, {78, 191}, {92, 173}, {39, 213}, {73, 187}, {69, 183}, {58, 200},
{52, 199}, {77, 190}, {59, 207}, {66, 182}, {64, 180}, {83, 167}, {36, 211},
{79, 184}, {96, 151}, {105, 158}, {51, 203}, {61, 197}, {51, 202}, {55, 206},
{53, 204}, {76, 181}, {91, 162}, {68, 190}, {75, 177}, {46, 213}, {62, 197},
{60, 199}, {54, 205}, {50, 201}, {80, 172}, {86, 170}, {71, 186}, {75, 182},
{78, 179}, {83, 174}, {56, 198}, {61, 195}, {57, 199}, {41, 214}, {70, 185},
{84, 171}, {101, 154} }>;
(II) A more general form is to represent the graph as the orbit of {67, 127}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17,
28)(19, 31)(21, 33)(22, 35)(24, 38)(25, 40)(27, 43)(29, 46)(30, 48)(32, 49)(34,
51)(36, 53)(37, 55)(39, 56)(41, 59)(42, 61)(44, 63)(45, 58)(47, 65)(50, 69)(52,
72)(54, 74)(57, 77)(60, 81)(62, 82)(64, 83)(66, 84)(67, 85)(68, 86)(70, 89)(71,
91)(73, 93)(75, 95)(76, 96)(78, 99)(79, 88)(80, 101)(87, 106)(90, 110)(92,
111)(94, 107)(97, 112)(98, 114)(100, 115)(102, 109)(103, 113)(104, 116)(105,
117)(108, 118)(119, 120)(122, 124)(123, 126)(125, 129)(127, 131)(128, 133)(130,
136)(132, 139)(134, 142)(135, 144)(137, 147)(138, 149)(140, 151)(141, 153)(143,
156)(145, 159)(146, 161)(148, 164)(150, 166)(152, 169)(154, 172)(155, 174)(157,
177)(158, 171)(160, 176)(162, 183)(163, 179)(165, 167)(168, 181)(170, 190)(173,
193)(175, 196)(180, 195)(182, 200)(184, 203)(185, 204)(186, 206)(187, 207)(188,
197)(189, 194)(191, 210)(192, 202)(198, 213)(199, 215)(201, 217)(205, 222)(208,
227)(209, 212)(211, 221)(214, 229)(216, 223)(218, 234)(219, 235)(220, 236)(224,
231)(225, 233)(226, 228)(230, 239)(232, 240) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 27)(11, 12)(13, 34)(15, 39)(16, 17)(18,
47)(20, 32)(21, 22)(23, 54)(24, 25)(26, 60)(28, 31)(29, 30)(33, 50)(35, 64)(36,
37)(40, 78)(41, 42)(43, 62)(44, 45)(46, 52)(48, 66)(49, 55)(51, 90)(53, 73)(56,
63)(57, 58)(59, 100)(61, 65)(67, 68)(69, 107)(70, 71)(72, 101)(74, 104)(75,
76)(77, 113)(79, 80)(81, 106)(82, 94)(83, 96)(84, 86)(85, 92)(87, 88)(89,
93)(91, 99)(95, 105)(97, 98)(102, 103)(108, 109)(110, 116)(111, 118)(112,
119)(114, 117)(121, 125)(122, 123)(124, 132)(126, 130)(127, 128)(129, 143)(131,
148)(133, 152)(134, 135)(136, 160)(137, 138)(139, 150)(140, 141)(142, 173)(144,
178)(145, 146)(147, 184)(149, 165)(151, 189)(153, 191)(154, 155)(156, 197)(157,
158)(159, 199)(161, 169)(162, 163)(164, 205)(166, 208)(167, 168)(170, 171)(172,
192)(174, 213)(175, 176)(177, 198)(179, 180)(181, 182)(183, 218)(185, 186)(187,
188)(190, 209)(193, 228)(194, 195)(196, 214)(200, 216)(201, 202)(203, 219)(204,
237)(206, 210)(207, 234)(211, 212)(215, 240)(217, 229)(220, 221)(222, 238)(223,
224)(225, 226)(227, 235)(230, 231)(232, 233)(236, 239)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18,
29)(20, 32)(22, 34)(23, 36)(25, 39)(26, 41)(28, 44)(30, 47)(31, 45)(33, 50)(35,
46)(37, 54)(40, 57)(42, 60)(43, 62)(49, 67)(51, 70)(52, 64)(53, 73)(55, 68)(56,
75)(58, 78)(59, 79)(61, 65)(63, 76)(69, 87)(71, 90)(72, 92)(74, 94)(77, 97)(80,
100)(81, 102)(82, 104)(83, 96)(84, 105)(85, 101)(86, 95)(88, 107)(89, 108)(91,
99)(93, 109)(98, 113)(103, 106)(111, 119)(112, 118)(114, 117)(121, 122)(123,
125)(124, 127)(126, 130)(128, 132)(129, 134)(131, 137)(133, 140)(135, 143)(136,
145)(138, 148)(139, 150)(141, 152)(142, 154)(144, 157)(146, 160)(147, 162)(149,
165)(151, 167)(153, 170)(155, 173)(156, 175)(158, 178)(159, 179)(161, 181)(163,
184)(164, 185)(166, 187)(168, 189)(169, 182)(171, 191)(172, 192)(174, 194)(176,
197)(177, 198)(180, 199)(183, 201)(186, 205)(188, 208)(190, 209)(193, 211)(195,
213)(196, 214)(200, 216)(202, 218)(203, 219)(204, 220)(206, 223)(207, 225)(210,
224)(212, 228)(215, 230)(217, 232)(221, 237)(222, 235)(226, 234)(227, 238)(229,
233)(231, 240)(236, 239)
C4[ 240, 115 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 134 127 130
-4 123 135 126 128
-5 124 136 131 142
-6 132 143 125 130
-7 133 144 123 126
-8 154 145 137 127
-9 155 146 138 128
-10 156 136 139 129
-11 157 125 140 130
-12 121 158 126 141
-13 147 159 172 131
-14 132 148 160 173
-15 133 149 161 174
-16 134 145 150 175
-17 176 135 146 139
-18 177 136 129 151
-19 122 178 130 152
-20 121 123 171 153
-21 179 137 192 162
-22 180 138 172 163
-23 176 193 139 164
-24 165 181 194 140
-25 149 182 195 141
-26 166 159 196 142
-27 143 160 150 197
-28 132 144 160 161
-29 198 134 145 167
-30 177 135 146 168
-31 178 124 136 169
-32 122 125 191 170
-33 147 202 183 163
-34 199 148 192 184
-35 154 179 149 195
-36 211 150 185 197
-37 156 212 139 186
-38 167 189 168 151
-39 165 169 213 152
-40 200 180 138 153
-41 154 187 179 214
-42 155 188 180 196
-43 176 166 188 156
-44 146 157 181 128
-45 145 158 127 182
-46 165 213 159 142
-47 143 198 189 160
-48 144 157 181 161
-49 210 124 190 129
-50 201 162 184 218
-51 202 203 215 164
-52 199 149 173 174
-53 166 188 221 204
-54 150 205 228 175
-55 132 143 209 206
-56 198 167 169 152
-57 199 148 170 216
-58 200 159 171 131
-59 172 163 207 229
-60 199 214 173 208
-61 195 174 175 197
-62 187 175 197 208
-63 133 177 168 161
-64 165 155 180 194
-65 176 156 213 194
-66 178 158 169 182
-67 209 134 224 127
-68 135 190 223 128
-69 234 203 183 217
-70 185 218 219 230
-71 231 203 183 186
-72 155 138 193 215
-73 187 220 237 208
-74 166 222 226 196
-75 177 182 151 141
-76 198 189 181 140
-77 190 223 215 164
-78 179 191 137 216
-79 233 192 225 184
-80 232 147 226 172
-81 193 215 227 229
-82 188 227 196 207
-83 167 189 195 174
-84 178 200 171 152
-85 231 212 131 142
-86 133 144 170 216
-87 232 201 226 219
-88 233 202 203 225
-89 234 235 204 239
-90 201 205 240 219
-91 224 162 184 206
-92 211 148 173 230
-93 236 237 227 207
-94 187 234 235 214
-95 200 157 140 153
-96 168 213 194 151
-97 209 206 185 230
-98 231 210 190 186
-99 210 223 147 163
-100 234 192 162 217
-101 154 137 228 240
-102 211 233 238 230
-103 231 232 222 212
-104 214 225 238 208
-105 158 191 216 141
-106 235 217 228 240
-107 207 218 229 219
-108 220 222 236 226
-109 221 225 238 239
-110 232 222 235 217
-111 221 193 239 164
-112 212 204 239 186
-113 209 224 205 240
-114 191 224 170 206
-115 201 202 183 218
-116 233 227 238 229
-117 210 223 171 153
-118 220 236 205 228
-119 211 236 237 185
-120 220 221 204 237
-121 1 12 2 20
-122 1 3 19 32
-123 1 4 7 20
-124 2 5 49 31
-125 11 1 6 32
-126 12 2 4 7
-127 45 67 3 8
-128 44 68 4 9
-129 2 49 18 10
-130 11 3 6 19
-131 13 58 5 85
-132 55 14 6 28
-133 15 7 63 86
-134 67 3 16 29
-135 68 4 17 30
-136 5 18 31 10
-137 78 101 8 21
-138 22 72 40 9
-139 23 37 17 10
-140 11 24 95 76
-141 12 25 105 75
-142 46 26 5 85
-143 55 47 27 6
-144 48 28 7 86
-145 45 16 29 8
-146 44 17 30 9
-147 33 99 13 80
-148 34 57 14 92
-149 35 25 15 52
-150 36 16 27 54
-151 38 18 96 75
-152 56 39 84 19
-153 40 95 117 20
-154 35 101 8 41
-155 72 9 42 64
-156 37 10 43 65
-157 11 44 48 95
-158 66 12 45 105
-159 13 46 58 26
-160 14 47 27 28
-161 15 48 28 63
-162 100 91 50 21
-163 22 33 99 59
-164 77 23 111 51
-165 24 46 39 64
-166 26 74 53 43
-167 56 38 83 29
-168 38 30 63 96
-169 66 56 39 31
-170 57 114 86 32
-171 58 84 117 20
-172 22 13 80 59
-173 14 92 60 52
-174 15 61 83 52
-175 16 61 62 54
-176 23 17 43 65
-177 18 30 63 75
-178 66 84 19 31
-179 78 35 41 21
-180 22 40 42 64
-181 44 24 48 76
-182 66 45 25 75
-183 33 69 71 115
-184 34 79 91 50
-185 36 70 97 119
-186 112 37 71 98
-187 94 62 73 41
-188 82 42 53 43
-189 47 38 83 76
-190 77 68 49 98
-191 78 114 105 32
-192 34 100 79 21
-193 23 111 81 72
-194 24 96 64 65
-195 35 25 61 83
-196 26 82 74 42
-197 36 27 61 62
-198 56 47 29 76
-199 34 57 60 52
-200 58 40 84 95
-201 90 115 50 87
-202 33 88 115 51
-203 88 69 71 51
-204 89 112 53 120
-205 90 113 118 54
-206 55 91 114 97
-207 59 82 93 107
-208 60 104 62 73
-209 55 67 113 97
-210 99 49 117 98
-211 36 102 92 119
-212 112 37 103 85
-213 46 39 96 65
-214 60 104 94 41
-215 77 81 72 51
-216 78 57 105 86
-217 110 100 69 106
-218 70 115 50 107
-219 90 70 107 87
-220 73 118 108 120
-221 111 53 109 120
-222 110 103 74 108
-223 77 99 68 117
-224 67 91 113 114
-225 88 79 104 109
-226 80 74 108 87
-227 81 82 93 116
-228 101 106 118 54
-229 59 81 116 107
-230 102 70 92 97
-231 103 71 85 98
-232 110 80 103 87
-233 88 79 102 116
-234 89 100 69 94
-235 110 89 94 106
-236 93 118 108 119
-237 93 73 119 120
-238 102 104 116 109
-239 89 111 112 109
-240 90 101 113 106
0