[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 116 ] =
SDD(Pr_20(1,13,17,9)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {120, 121}, {120, 122}, {120, 123}, {120, 125}, {116, 124}, {118,
127}, {119, 126}, {119, 124}, {118, 122}, {117, 123}, {119, 121}, {114, 125},
{108, 126}, {106, 127}, {8, 127}, {1, 121}, {3, 122}, {5, 124}, {7, 126}, {1,
123}, {1, 122}, {2, 121}, {6, 125}, {1, 125}, {2, 126}, {3, 127}, {2, 124}, {4,
123}, {39, 167}, {49, 177}, {48, 176}, {47, 175}, {43, 171}, {44, 172}, {45,
173}, {46, 174}, {80, 208}, {102, 230}, {3, 130}, {56, 185}, {54, 183}, {52,
181}, {50, 179}, {5, 132}, {7, 134}, {13, 140}, {18, 144}, {111, 237}, {57,
187}, {2, 129}, {62, 189}, {60, 191}, {53, 182}, {6, 133}, {20, 151}, {35, 160},
{39, 164}, {42, 169}, {72, 203}, {3, 135}, {4, 128}, {8, 140}, {9, 141}, {10,
142}, {11, 143}, {30, 154}, {31, 155}, {77, 201}, {97, 229}, {27, 158}, {64,
197}, {61, 184}, {29, 152}, {36, 161}, {38, 163}, {87, 210}, {94, 219}, {56,
190}, {59, 189}, {58, 188}, {83, 213}, {85, 211}, {4, 131}, {51, 180}, {37,
162}, {88, 223}, {101, 226}, {43, 163}, {70, 206}, {69, 205}, {68, 204}, {67,
203}, {71, 207}, {75, 195}, {85, 221}, {103, 239}, {9, 128}, {67, 202}, {65,
200}, {58, 179}, {11, 130}, {13, 132}, {15, 134}, {24, 145}, {26, 147}, {37,
172}, {80, 217}, {88, 209}, {97, 232}, {101, 236}, {103, 238}, {28, 150}, {56,
178}, {80, 218}, {84, 222}, {10, 129}, {66, 201}, {59, 176}, {14, 133}, {16,
155}, {25, 146}, {4, 136}, {5, 137}, {6, 138}, {7, 139}, {21, 153}, {103, 235},
{17, 156}, {19, 158}, {38, 171}, {41, 164}, {105, 228}, {40, 166}, {50, 188},
{41, 167}, {44, 162}, {82, 220}, {12, 131}, {111, 224}, {110, 225}, {55, 184},
{18, 157}, {27, 148}, {101, 234}, {73, 217}, {93, 205}, {62, 175}, {97, 240},
{85, 199}, {73, 218}, {5, 145}, {6, 146}, {7, 147}, {12, 152}, {42, 190}, {15,
154}, {67, 214}, {39, 178}, {101, 240}, {83, 197}, {87, 193}, {8, 159}, {14,
153}, {16, 135}, {21, 141}, {22, 142}, {23, 143}, {75, 211}, {79, 215}, {88,
192}, {17, 136}, {69, 220}, {19, 138}, {73, 208}, {78, 215}, {90, 195}, {15,
149}, {70, 220}, {18, 137}, {68, 223}, {33, 186}, {41, 178}, {8, 148}, {54,
170}, {9, 149}, {10, 150}, {11, 151}, {12, 144}, {82, 206}, {113, 236}, {75,
213}, {90, 196}, {20, 139}, {78, 209}, {73, 233}, {102, 198}, {28, 190}, {29,
191}, {71, 229}, {96, 194}, {24, 187}, {113, 210}, {111, 204}, {19, 183}, {68,
224}, {104, 204}, {16, 181}, {65, 228}, {59, 158}, {25, 188}, {28, 185}, {78,
235}, {27, 189}, {86, 240}, {17, 182}, {70, 225}, {66, 229}, {64, 231}, {26,
189}, {97, 201}, {113, 217}, {9, 160}, {70, 239}, {68, 237}, {65, 232}, {11,
162}, {13, 164}, {30, 183}, {66, 232}, {110, 196}, {71, 237}, {10, 161}, {14,
165}, {27, 176}, {20, 184}, {54, 154}, {21, 185}, {22, 186}, {79, 227}, {62,
147}, {99, 206}, {28, 178}, {64, 238}, {56, 150}, {12, 163}, {69, 234}, {59,
148}, {111, 223}, {83, 226}, {105, 216}, {23, 165}, {66, 240}, {98, 208}, {102,
212}, {105, 219}, {82, 225}, {90, 233}, {30, 170}, {86, 226}, {24, 173}, {26,
175}, {29, 168}, {16, 166}, {17, 167}, {25, 174}, {87, 224}, {94, 230}, {80,
233}, {90, 227}, {94, 231}, {103, 222}, {14, 180}, {110, 212}, {84, 238}, {86,
236}, {19, 168}, {84, 239}, {22, 170}, {23, 171}, {32, 156}, {33, 157}, {86,
234}, {20, 169}, {34, 159}, {82, 239}, {13, 179}, {15, 177}, {18, 172}, {96,
222}, {84, 235}, {31, 223}, {113, 177}, {32, 224}, {74, 138}, {35, 225}, {77,
143}, {104, 170}, {107, 169}, {30, 221}, {46, 237}, {88, 155}, {91, 152}, {105,
173}, {72, 141}, {76, 137}, {95, 154}, {100, 161}, {36, 226}, {115, 180}, {42,
227}, {47, 230}, {45, 228}, {102, 175}, {95, 149}, {98, 168}, {46, 229}, {87,
156}, {91, 144}, {92, 151}, {109, 166}, {93, 145}, {29, 208}, {81, 156}, {99,
174}, {31, 209}, {110, 160}, {112, 160}, {72, 153}, {76, 157}, {53, 231}, {104,
186}, {92, 143}, {107, 184}, {51, 231}, {60, 232}, {74, 158}, {75, 159}, {24,
205}, {51, 230}, {26, 207}, {89, 140}, {63, 233}, {115, 165}, {25, 206}, {60,
228}, {91, 131}, {109, 181}, {81, 136}, {95, 134}, {22, 204}, {96, 186}, {48,
235}, {53, 238}, {63, 227}, {76, 144}, {49, 236}, {89, 132}, {98, 191}, {21,
203}, {52, 234}, {23, 201}, {92, 130}, {31, 192}, {99, 188}, {58, 218}, {114,
146}, {76, 172}, {107, 139}, {32, 193}, {55, 214}, {48, 209}, {34, 195}, {36,
197}, {38, 199}, {41, 200}, {46, 207}, {40, 202}, {74, 168}, {33, 194}, {49,
210}, {37, 198}, {40, 203}, {37, 193}, {57, 221}, {61, 216}, {116, 145}, {112,
149}, {67, 166}, {100, 129}, {38, 192}, {77, 171}, {79, 169}, {93, 187}, {104,
142}, {106, 140}, {35, 196}, {48, 215}, {81, 182}, {108, 139}, {49, 217}, {52,
220}, {51, 219}, {50, 218}, {77, 165}, {47, 198}, {71, 174}, {44, 198}, {115,
153}, {57, 211}, {89, 179}, {94, 180}, {100, 142}, {108, 134}, {109, 135}, {43,
192}, {61, 214}, {54, 221}, {43, 199}, {44, 193}, {85, 187}, {95, 177}, {39,
200}, {55, 216}, {53, 197}, {116, 132}, {112, 128}, {69, 181}, {58, 202}, {93,
173}, {34, 211}, {118, 135}, {62, 207}, {36, 213}, {72, 185}, {79, 190}, {99,
146}, {32, 210}, {83, 161}, {100, 150}, {60, 200}, {118, 130}, {45, 216}, {117,
128}, {55, 194}, {106, 159}, {45, 219}, {119, 129}, {117, 131}, {115, 133}, {64,
182}, {81, 167}, {109, 155}, {34, 213}, {114, 133}, {35, 212}, {50, 202}, {114,
138}, {91, 163}, {52, 205}, {98, 152}, {47, 212}, {63, 196}, {63, 195}, {107,
151}, {42, 215}, {117, 136}, {116, 137}, {112, 141}, {74, 183}, {89, 164}, {96,
157}, {40, 214}, {65, 191}, {57, 199}, {78, 176}, {92, 162}, {106, 148}, {33,
222}, {61, 194}, {108, 147} }>;
(II) A more general form is to represent the graph as the orbit of {120, 121}
under the group generated by the following permutations:
a: (63, 90) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (6, 114)
c: (60, 65)
d: (13, 89)
e: (9, 112)
f: (40, 67)
g: (39, 41)
h: (53, 64)
m: (27, 59)
n1: (8, 106)
a1: (73, 80)
b1: (18, 76)
c1: (3, 118)
d1: (17, 81)
e1: (12, 91)
f1: (29, 98)
g1: (34, 75)
h1: (23, 77)
m1: (4, 117)
n2: (68, 111)
a2: (48, 78)
b2: (19, 74)
c2: (36, 83)
d2: (31, 88)
e2: (70, 82)
f2: (47, 102)
g2: (45, 105)
h2: (10, 100)
m2: (22, 104)
n3: (37, 44)
a3: (84, 103)
b3: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 25)(18, 27)(22,
31)(24, 34)(26, 37)(28, 40)(30, 38)(32, 46)(33, 48)(35, 51)(36, 52)(39, 50)(41,
58)(42, 55)(43, 54)(44, 62)(45, 63)(49, 66)(53, 70)(56, 67)(59, 76)(60, 73)(61,
79)(64, 82)(65, 80)(69, 83)(71, 87)(74, 91)(75, 93)(77, 95)(78, 96)(81, 99)(88,
104)(90, 105)(92, 108)(94, 110)(97, 113)(100, 109)(106, 116)(112, 115)(114,
117)(118, 119)(121, 122)(123, 125)(124, 127)(126, 130)(128, 133)(129, 135)(131,
138)(132, 140)(134, 143)(136, 146)(137, 148)(139, 151)(141, 153)(142, 155)(144,
158)(145, 159)(147, 162)(149, 165)(150, 166)(152, 168)(154, 171)(156, 174)(157,
176)(160, 180)(161, 181)(163, 183)(164, 179)(167, 188)(169, 184)(170, 192)(172,
189)(173, 195)(175, 198)(177, 201)(178, 202)(182, 206)(185, 203)(186, 209)(187,
211)(190, 214)(191, 208)(193, 207)(194, 215)(196, 219)(197, 220)(199, 221)(200,
218)(204, 223)(205, 213)(210, 229)(212, 230)(216, 227)(217, 232)(222, 235)(224,
237)(225, 231)(226, 234)(228, 233)(236, 240)(238, 239)
c3: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 24)(17,
26)(19, 28)(21, 30)(23, 33)(25, 36)(27, 39)(29, 42)(31, 45)(32, 47)(34, 50)(35,
49)(38, 55)(40, 57)(41, 59)(43, 61)(46, 53)(48, 60)(51, 68)(54, 72)(56, 74)(58,
75)(62, 81)(63, 73)(64, 71)(65, 78)(66, 84)(67, 85)(70, 86)(76, 92)(77, 96)(79,
98)(80, 90)(82, 101)(83, 99)(87, 102)(88, 105)(89, 106)(91, 107)(93, 109)(94,
111)(95, 112)(97, 103)(100, 114)(104, 115)(108, 117)(110, 113)(116, 118)(119,
120)(122, 124)(123, 126)(125, 129)(127, 132)(128, 134)(130, 137)(131, 139)(133,
142)(135, 145)(136, 147)(138, 150)(141, 154)(143, 157)(144, 151)(146, 161)(148,
164)(152, 169)(153, 170)(155, 173)(156, 175)(158, 178)(159, 179)(160, 177)(162,
172)(163, 184)(165, 186)(166, 187)(167, 189)(168, 190)(171, 194)(174, 197)(176,
200)(180, 204)(181, 205)(182, 207)(183, 185)(188, 213)(191, 215)(192, 216)(193,
198)(195, 218)(196, 217)(199, 214)(201, 222)(202, 211)(203, 221)(206, 226)(208,
227)(209, 228)(210, 212)(219, 223)(220, 234)(224, 230)(225, 236)(229, 238)(231,
237)(232, 235)(239, 240)
d3: (38, 43)
e3: (16, 109)
f3: (66, 97)
g3: (5, 116)
h3: (15, 95)
m3: (14, 115)
n4: (30, 54)
a4: (33, 96)
b4: (51, 94)
c4: (52, 69)
d4: (32, 87)
e4: (11, 92)
f4: (46, 71)
g4: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 18)(16, 25)(20,
29)(22, 32)(23, 27)(24, 35)(26, 38)(28, 39)(30, 37)(31, 46)(33, 49)(34, 51)(36,
53)(40, 50)(41, 56)(42, 60)(43, 62)(44, 54)(45, 63)(47, 57)(48, 66)(52, 70)(55,
73)(58, 67)(59, 77)(61, 80)(64, 83)(65, 79)(69, 82)(71, 88)(72, 89)(74, 92)(75,
94)(76, 95)(78, 97)(81, 100)(84, 86)(85, 102)(87, 104)(90, 105)(91, 108)(93,
110)(96, 113)(98, 107)(99, 109)(101, 103)(106, 115)(112, 116)(114, 118)(117,
119)(121, 123)(122, 125)(124, 128)(126, 131)(127, 133)(129, 136)(130, 138)(132,
141)(134, 144)(135, 146)(137, 149)(139, 152)(140, 153)(142, 156)(143, 158)(145,
160)(147, 163)(148, 165)(150, 167)(151, 168)(154, 172)(155, 174)(157, 177)(159,
180)(161, 182)(162, 183)(164, 185)(166, 188)(169, 191)(170, 193)(171, 189)(173,
196)(175, 199)(176, 201)(179, 203)(181, 206)(184, 208)(186, 210)(187, 212)(190,
200)(192, 207)(194, 217)(195, 219)(198, 221)(204, 224)(205, 225)(209, 229)(211,
230)(213, 231)(214, 218)(215, 232)(216, 233)(222, 236)(223, 237)(226, 238)(227,
228)(234, 239)(235, 240)
h4: (24, 93)
m4: (26, 62)
n5: (20, 107)
a5: (50, 58)
b5: (49, 113)
c5: (86, 101)
d5: (35, 110)
e5: (55, 61)
f5: (25, 99)
g5: (21, 72)
h5: (57, 85)
m5: (28, 56)
n6: (2, 119)
a6: (7, 108)
C4[ 240, 116 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 135 127 130
-4 123 136 128 131
-5 132 145 124 137
-6 133 146 125 138
-7 134 147 126 139
-8 148 159 127 140
-9 149 160 128 141
-10 150 161 129 142
-11 143 151 162 130
-12 144 152 163 131
-13 132 179 140 164
-14 165 133 180 153
-15 154 177 134 149
-16 155 166 135 181
-17 156 167 136 182
-18 144 157 137 172
-19 168 158 138 183
-20 169 139 151 184
-21 203 141 185 153
-22 170 204 142 186
-23 143 165 201 171
-24 187 145 205 173
-25 188 146 206 174
-26 189 147 207 175
-27 176 189 158 148
-28 178 190 150 185
-29 168 191 152 208
-30 154 221 170 183
-31 209 155 223 192
-32 210 156 224 193
-33 222 157 194 186
-34 211 213 159 195
-35 212 225 160 196
-36 213 226 161 197
-37 198 193 172 162
-38 199 192 171 163
-39 167 178 200 164
-40 166 202 203 214
-41 167 178 200 164
-42 190 169 215 227
-43 199 192 171 163
-44 198 193 172 162
-45 216 173 228 219
-46 237 174 207 229
-47 198 212 175 230
-48 176 209 235 215
-49 177 210 236 217
-50 188 179 202 218
-51 231 180 219 230
-52 220 234 181 205
-53 231 182 238 197
-54 154 221 170 183
-55 214 194 216 184
-56 178 190 150 185
-57 187 199 221 211
-58 188 179 202 218
-59 176 189 158 148
-60 232 200 191 228
-61 214 194 216 184
-62 189 147 207 175
-63 233 227 195 196
-64 231 182 238 197
-65 232 200 191 228
-66 232 201 229 240
-67 166 202 203 214
-68 223 224 204 237
-69 220 234 181 205
-70 220 225 206 239
-71 237 174 207 229
-72 203 141 185 153
-73 233 217 218 208
-74 168 158 138 183
-75 211 213 159 195
-76 144 157 137 172
-77 143 165 201 171
-78 176 209 235 215
-79 190 169 215 227
-80 233 217 218 208
-81 156 167 136 182
-82 220 225 206 239
-83 213 226 161 197
-84 222 235 238 239
-85 187 199 221 211
-86 234 236 226 240
-87 210 156 224 193
-88 209 155 223 192
-89 132 179 140 164
-90 233 227 195 196
-91 144 152 163 131
-92 143 151 162 130
-93 187 145 205 173
-94 231 180 219 230
-95 154 177 134 149
-96 222 157 194 186
-97 232 201 229 240
-98 168 191 152 208
-99 188 146 206 174
-100 150 161 129 142
-101 234 236 226 240
-102 198 212 175 230
-103 222 235 238 239
-104 170 204 142 186
-105 216 173 228 219
-106 148 159 127 140
-107 169 139 151 184
-108 134 147 126 139
-109 155 166 135 181
-110 212 225 160 196
-111 223 224 204 237
-112 149 160 128 141
-113 177 210 236 217
-114 133 146 125 138
-115 165 133 180 153
-116 132 145 124 137
-117 123 136 128 131
-118 122 135 127 130
-119 121 124 126 129
-120 121 122 123 125
-121 1 2 119 120
-122 1 3 118 120
-123 1 4 117 120
-124 2 5 116 119
-125 1 114 6 120
-126 2 7 108 119
-127 3 106 8 118
-128 112 4 117 9
-129 100 2 119 10
-130 11 3 92 118
-131 12 91 4 117
-132 89 13 5 116
-133 14 114 115 6
-134 15 7 95 108
-135 3 16 118 109
-136 4 81 17 117
-137 5 116 18 76
-138 114 6 19 74
-139 7 107 20 108
-140 89 13 106 8
-141 112 72 9 21
-142 22 100 104 10
-143 11 77 23 92
-144 12 91 18 76
-145 24 5 93 116
-146 99 25 114 6
-147 26 7 62 108
-148 59 27 106 8
-149 112 15 95 9
-150 56 100 28 10
-151 11 92 107 20
-152 12 91 29 98
-153 14 115 72 21
-154 15 95 30 54
-155 88 16 31 109
-156 81 17 32 87
-157 33 18 96 76
-158 59 27 19 74
-159 34 106 8 75
-160 110 35 112 9
-161 100 36 83 10
-162 11 44 37 92
-163 12 91 38 43
-164 89 13 39 41
-165 77 23 14 115
-166 67 16 40 109
-167 81 17 39 41
-168 29 19 74 98
-169 79 107 20 42
-170 22 104 30 54
-171 77 23 38 43
-172 44 37 18 76
-173 45 24 93 105
-174 99 46 25 71
-175 47 102 26 62
-176 78 48 59 27
-177 113 15 49 95
-178 56 28 39 41
-179 89 13 58 50
-180 14 115 94 51
-181 69 16 52 109
-182 81 17 53 64
-183 19 30 74 54
-184 55 61 107 20
-185 56 28 72 21
-186 22 33 104 96
-187 24 57 93 85
-188 99 25 58 50
-189 26 59 27 62
-190 56 79 28 42
-191 60 29 65 98
-192 88 38 31 43
-193 44 37 32 87
-194 33 55 61 96
-195 34 90 63 75
-196 110 35 90 63
-197 36 83 53 64
-198 44 47 102 37
-199 57 38 85 43
-200 60 39 41 65
-201 66 77 23 97
-202 67 58 50 40
-203 67 72 40 21
-204 22 111 68 104
-205 24 69 93 52
-206 99 25 70 82
-207 46 26 71 62
-208 80 29 73 98
-209 88 78 48 31
-210 113 49 32 87
-211 34 57 85 75
-212 110 35 47 102
-213 34 36 83 75
-214 55 67 61 40
-215 78 79 48 42
-216 55 45 61 105
-217 80 113 49 73
-218 58 80 50 73
-219 45 94 105 51
-220 69 70 82 52
-221 57 30 85 54
-222 33 103 84 96
-223 88 111 68 31
-224 111 68 32 87
-225 110 35 70 82
-226 101 36 83 86
-227 79 90 63 42
-228 45 60 105 65
-229 66 46 71 97
-230 47 102 94 51
-231 94 51 53 64
-232 66 60 97 65
-233 90 80 73 63
-234 101 69 52 86
-235 78 48 103 84
-236 101 113 49 86
-237 111 46 68 71
-238 103 84 53 64
-239 70 103 82 84
-240 66 101 86 97
0