[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 117 ] =
SDD(C_60(1,19)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {114, 121}, {114, 125}, {116, 123}, {110, 126}, {99, 123}, {99,
122}, {99, 121}, {101, 127}, {103, 125}, {97, 122}, {99, 126}, {98, 124}, {82,
127}, {82, 124}, {12, 126}, {13, 127}, {11, 125}, {1, 121}, {1, 123}, {6, 124},
{1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124},
{14, 142}, {61, 189}, {19, 147}, {109, 237}, {85, 212}, {87, 214}, {104, 233},
{2, 128}, {70, 196}, {62, 188}, {3, 129}, {4, 134}, {5, 135}, {38, 164}, {8,
139}, {57, 186}, {51, 176}, {20, 151}, {24, 155}, {28, 159}, {73, 202}, {79,
204}, {6, 130}, {66, 198}, {65, 197}, {46, 170}, {71, 195}, {7, 130}, {111,
234}, {9, 140}, {16, 149}, {18, 151}, {25, 156}, {27, 158}, {91, 222}, {16,
150}, {19, 149}, {77, 203}, {10, 141}, {17, 150}, {26, 157}, {34, 165}, {90,
221}, {107, 236}, {48, 185}, {64, 201}, {63, 182}, {52, 189}, {2, 136}, {67,
201}, {49, 187}, {3, 137}, {4, 142}, {5, 143}, {93, 215}, {8, 131}, {62, 181},
{84, 223}, {88, 211}, {89, 210}, {94, 213}, {11, 135}, {33, 173}, {86, 218},
{94, 210}, {7, 138}, {61, 176}, {9, 132}, {21, 152}, {23, 154}, {14, 128}, {69,
203}, {51, 189}, {15, 129}, {10, 133}, {55, 184}, {47, 160}, {46, 161}, {22,
153}, {39, 168}, {107, 228}, {108, 227}, {80, 192}, {81, 193}, {9, 152}, {68,
213}, {66, 211}, {58, 171}, {35, 178}, {83, 194}, {91, 202}, {44, 190}, {69,
215}, {45, 191}, {16, 131}, {65, 210}, {60, 175}, {53, 166}, {48, 163}, {34,
177}, {36, 183}, {31, 139}, {65, 213}, {43, 191}, {79, 219}, {17, 132}, {50,
167}, {29, 136}, {42, 191}, {76, 217}, {6, 144}, {117, 227}, {7, 145}, {93,
203}, {12, 155}, {59, 172}, {18, 133}, {30, 137}, {40, 191}, {77, 218}, {8,
146}, {52, 174}, {9, 147}, {52, 175}, {112, 235}, {57, 162}, {72, 211}, {94,
197}, {44, 176}, {23, 138}, {37, 184}, {75, 214}, {7, 153}, {117, 235}, {54,
168}, {10, 148}, {15, 145}, {24, 134}, {88, 198}, {55, 168}, {55, 151}, {56,
152}, {110, 206}, {100, 197}, {113, 208}, {6, 164}, {70, 228}, {25, 187}, {28,
190}, {75, 233}, {106, 200}, {17, 181}, {66, 230}, {18, 182}, {19, 183}, {76,
232}, {104, 204}, {107, 207}, {67, 230}, {4, 162}, {119, 209}, {65, 231}, {64,
230}, {5, 163}, {26, 188}, {27, 189}, {86, 240}, {102, 193}, {115, 212}, {120,
208}, {29, 180}, {52, 158}, {118, 220}, {69, 239}, {54, 156}, {75, 225}, {101,
207}, {103, 205}, {11, 160}, {56, 147}, {105, 194}, {10, 166}, {70, 234}, {67,
239}, {66, 238}, {13, 161}, {20, 184}, {21, 185}, {22, 186}, {28, 176}, {32,
140}, {33, 141}, {8, 165}, {69, 232}, {30, 179}, {34, 143}, {75, 229}, {102,
200}, {105, 199}, {64, 239}, {119, 216}, {108, 195}, {45, 157}, {80, 224}, {37,
148}, {118, 199}, {96, 209}, {105, 216}, {111, 222}, {87, 229}, {93, 239}, {100,
214}, {109, 223}, {35, 144}, {44, 159}, {24, 172}, {56, 140}, {25, 173}, {26,
174}, {27, 175}, {43, 159}, {27, 174}, {40, 157}, {42, 159}, {93, 232}, {104,
221}, {31, 169}, {36, 146}, {86, 224}, {87, 225}, {88, 238}, {91, 237}, {106,
220}, {16, 167}, {41, 158}, {84, 236}, {117, 205}, {90, 226}, {94, 231}, {15,
180}, {39, 156}, {20, 168}, {56, 132}, {21, 169}, {22, 170}, {23, 171}, {38,
154}, {76, 240}, {12, 177}, {14, 179}, {80, 238}, {112, 206}, {87, 233}, {88,
230}, {13, 178}, {100, 219}, {77, 141}, {84, 148}, {107, 171}, {18, 211}, {21,
212}, {29, 220}, {12, 206}, {118, 180}, {115, 177}, {13, 207}, {30, 220}, {17,
210}, {78, 141}, {97, 162}, {100, 167}, {31, 219}, {79, 139}, {101, 161}, {11,
205}, {22, 208}, {95, 153}, {98, 164}, {41, 238}, {112, 183}, {102, 161}, {103,
160}, {42, 226}, {83, 155}, {32, 233}, {35, 234}, {37, 236}, {41, 224}, {43,
226}, {74, 131}, {105, 160}, {109, 164}, {43, 225}, {38, 237}, {120, 179}, {113,
186}, {42, 225}, {78, 133}, {81, 154}, {60, 240}, {102, 170}, {72, 133}, {119,
186}, {85, 152}, {80, 158}, {92, 146}, {95, 145}, {26, 213}, {63, 240}, {36,
235}, {89, 150}, {108, 163}, {19, 195}, {59, 235}, {20, 196}, {71, 149}, {25,
202}, {48, 227}, {31, 204}, {82, 129}, {51, 231}, {71, 147}, {60, 232}, {96,
180}, {49, 228}, {119, 162}, {73, 156}, {83, 134}, {95, 138}, {108, 185}, {23,
193}, {115, 165}, {58, 236}, {51, 229}, {30, 200}, {92, 139}, {116, 163}, {101,
178}, {53, 237}, {61, 229}, {59, 227}, {68, 157}, {117, 172}, {106, 179}, {24,
194}, {61, 231}, {29, 199}, {78, 148}, {49, 234}, {113, 170}, {81, 138}, {82,
137}, {28, 192}, {62, 226}, {74, 150}, {89, 132}, {95, 130}, {111, 178}, {14,
208}, {58, 228}, {15, 209}, {63, 224}, {72, 151}, {74, 149}, {92, 131}, {110,
177}, {77, 173}, {86, 182}, {98, 130}, {103, 135}, {39, 198}, {57, 216}, {54,
215}, {40, 201}, {96, 129}, {112, 146}, {62, 221}, {76, 175}, {106, 137}, {45,
201}, {50, 214}, {73, 173}, {104, 140}, {60, 217}, {63, 218}, {46, 200}, {79,
169}, {90, 188}, {97, 134}, {47, 199}, {113, 153}, {57, 209}, {78, 166}, {41,
192}, {50, 219}, {33, 203}, {68, 174}, {36, 206}, {53, 222}, {32, 204}, {44,
192}, {84, 184}, {85, 185}, {89, 181}, {47, 194}, {74, 167}, {46, 193}, {90,
181}, {97, 142}, {39, 215}, {71, 183}, {54, 198}, {40, 217}, {96, 145}, {73,
187}, {114, 128}, {98, 144}, {48, 195}, {116, 135}, {55, 196}, {45, 217}, {49,
196}, {58, 207}, {110, 155}, {34, 212}, {120, 142}, {59, 205}, {47, 216}, {50,
197}, {109, 154}, {68, 188}, {120, 128}, {38, 223}, {92, 165}, {37, 223}, {114,
136}, {81, 171}, {33, 218}, {116, 143}, {85, 169}, {115, 143}, {32, 221}, {70,
187}, {67, 190}, {35, 222}, {91, 166}, {64, 190}, {118, 136}, {72, 182}, {53,
202}, {83, 172}, {111, 144} }>;
(II) A more general form is to represent the graph as the orbit of {114, 121}
under the group generated by the following permutations:
a: (23, 81) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (31, 79)
c: (58, 107)
d: (1, 2, 11, 47, 24, 4)(3, 19, 7, 8, 46, 21)(5, 29, 59, 57, 12, 14)(6, 16, 23,
31, 13, 9)(10, 51, 20, 42, 25, 26)(15, 36, 22, 34, 30, 48)(17, 38, 50, 58, 32,
35)(18, 28, 39, 40, 33, 27)(37, 75, 49, 62, 53, 65)(41, 66, 64, 69, 60, 63)(43,
73, 68, 78, 61, 55)(44, 54, 45, 77, 52, 72)(56, 98, 74, 81, 79, 101)(67, 93, 76,
86, 80, 88)(70, 90, 91, 94, 84, 87)(71, 95, 92, 102, 85, 82)(83, 97, 99, 114,
103, 105)(89, 109, 100, 107, 104, 111)(96, 112, 113, 115, 106, 108)(110, 120,
116, 118, 117, 119)(121, 125, 160, 194, 134, 122)(123, 136, 205, 216, 155,
142)(124, 149, 138, 139, 161, 152)(126, 128, 135, 199, 172, 162)(127, 147, 130,
131, 193, 169)(129, 183, 153, 165, 200, 185)(132, 164, 167, 171, 204, 178)(133,
176, 168, 191, 173, 174)(137, 195, 145, 146, 170, 212)(140, 144, 150, 154, 219,
207)(141, 189, 151, 159, 156, 157)(143, 220, 227, 209, 206, 208)(148, 229, 196,
226, 202, 213)(158, 211, 190, 215, 217, 218)(163, 180, 235, 186, 177, 179)(166,
231, 184, 225, 187, 188)(175, 182, 192, 198, 201, 203)(181, 237, 197, 236, 233,
234)(210, 223, 214, 228, 221, 222)(224, 238, 230, 239, 232, 240)
e: (11, 103)
f: (10, 78)
g: (28, 44)
h: (34, 115)
m: (53, 91)
n1: (14, 120)
a1: (60, 76)
b1: (32, 104)
c1: (49, 70)
d1: (25, 73)
e1: (75, 87)
f1: (24, 83)
g1: (2, 4)(3, 7)(5, 12)(8, 21)(9, 16)(10, 25)(11, 24)(13, 23)(18, 39)(22,
30)(27, 40)(29, 57)(32, 50)(35, 38)(36, 48)(37, 49)(41, 64)(42, 51)(43, 61)(45,
52)(54, 72)(56, 74)(62, 65)(63, 69)(67, 80)(70, 84)(73, 78)(81, 101)(82, 95)(83,
103)(85, 92)(86, 93)(90, 94)(97, 114)(100, 104)(106, 113)(108, 112)(109,
111)(110, 116)(118, 119)(121, 122)(123, 126)(124, 130)(125, 134)(127, 138)(128,
142)(129, 145)(131, 152)(132, 150)(133, 156)(135, 155)(136, 162)(137, 153)(139,
169)(140, 167)(141, 173)(143, 177)(144, 164)(146, 185)(147, 149)(148, 187)(151,
168)(154, 178)(157, 174)(158, 201)(159, 176)(160, 194)(161, 193)(163, 206)(165,
212)(166, 202)(170, 200)(171, 207)(172, 205)(175, 217)(179, 208)(180, 209)(181,
210)(182, 215)(183, 195)(184, 196)(186, 220)(188, 213)(189, 191)(190, 192)(197,
221)(198, 211)(199, 216)(203, 218)(204, 219)(214, 233)(222, 237)(223, 234)(224,
239)(225, 229)(226, 231)(227, 235)(228, 236)(230, 238)(232, 240)
h1: (29, 118)
m1: (3, 82)
n2: (33, 77)
a2: (64, 67)
b2: (66, 88)
c2: (13, 101)
d2: (41, 80)
e2: (35, 111)
f2: (20, 55)
g2: (30, 106)
h2: (7, 95)
m2: (15, 96)
n3: (39, 54)
a3: (63, 86)
b3: (2, 5)(3, 9)(4, 12)(6, 17)(7, 16)(8, 22)(10, 27)(13, 32)(14, 34)(15, 19)(18,
41)(20, 28)(21, 30)(23, 50)(25, 40)(26, 53)(29, 48)(31, 46)(33, 60)(35, 62)(36,
57)(37, 51)(38, 65)(39, 64)(42, 49)(43, 70)(44, 55)(45, 73)(47, 59)(52, 78)(54,
67)(56, 82)(58, 75)(61, 84)(68, 91)(71, 96)(72, 80)(74, 95)(76, 77)(79, 102)(81,
100)(85, 106)(87, 107)(89, 98)(90, 111)(92, 113)(94, 109)(97, 110)(101,
104)(105, 117)(108, 118)(112, 119)(114, 116)(115, 120)(121, 123)(122, 126)(124,
132)(125, 135)(127, 140)(128, 143)(129, 147)(130, 150)(131, 153)(133, 158)(134,
155)(136, 163)(137, 152)(138, 167)(139, 170)(141, 175)(142, 177)(144, 181)(145,
149)(146, 186)(148, 189)(151, 192)(154, 197)(156, 201)(157, 202)(159, 196)(160,
205)(161, 204)(162, 206)(164, 210)(165, 208)(166, 174)(168, 190)(169, 200)(171,
214)(172, 194)(173, 217)(176, 184)(178, 221)(179, 212)(180, 195)(182, 224)(183,
209)(185, 220)(187, 191)(188, 222)(193, 219)(198, 230)(199, 227)(203, 232)(207,
233)(211, 238)(213, 237)(215, 239)(216, 235)(218, 240)(223, 231)(225, 228)(226,
234)(229, 236)
c3: (8, 92)
d3: (6, 98)
e3: (46, 102)
f3: (48, 108)
g3: (2, 114)
h3: (62, 90)
m3: (9, 56)
n4: (69, 93)
a4: (36, 112)
b4: (19, 71)
c4: (4, 97)
d4: (5, 116)
e4: (22, 113)
f4: (21, 85)
g4: (12, 110)
h4: (47, 105)
m4: (16, 74)
n5: (65, 94)
a5: (51, 61)
b5: (37, 84)
c5: (50, 100)
d5: (59, 117)
e5: (40, 45)
f5: (26, 68)
g5: (57, 119)
h5: (17, 89)
m5: (38, 109)
n6: (27, 52)
a6: (42, 43)
C4[ 240, 117 ]
240
-1 121 122 123 126
-2 121 125 136 128
-3 124 137 127 129
-4 122 134 162 142
-5 143 123 135 163
-6 144 124 130 164
-7 145 138 130 153
-8 165 146 139 131
-9 132 147 140 152
-10 133 166 148 141
-11 135 125 160 205
-12 155 177 126 206
-13 178 127 161 207
-14 179 128 142 208
-15 209 145 180 129
-16 167 149 150 131
-17 132 210 181 150
-18 133 211 182 151
-19 147 149 183 195
-20 168 151 184 196
-21 212 169 152 185
-22 170 153 186 208
-23 154 138 171 193
-24 155 134 172 194
-25 187 156 202 173
-26 188 157 213 174
-27 189 158 174 175
-28 176 190 159 192
-29 220 199 136 180
-30 220 200 179 137
-31 169 204 139 219
-32 221 233 204 140
-33 203 173 141 218
-34 143 165 177 212
-35 144 178 222 234
-36 146 235 183 206
-37 223 148 236 184
-38 154 223 237 164
-39 198 156 168 215
-40 157 201 191 217
-41 158 224 192 238
-42 191 159 225 226
-43 191 159 225 226
-44 176 190 159 192
-45 157 201 191 217
-46 200 170 193 161
-47 199 160 194 216
-48 227 195 163 185
-49 187 234 228 196
-50 167 214 197 219
-51 176 231 189 229
-52 189 158 174 175
-53 166 222 202 237
-54 198 156 168 215
-55 168 151 184 196
-56 132 147 140 152
-57 209 216 162 186
-58 236 171 228 207
-59 235 172 205 227
-60 232 217 240 175
-61 176 231 189 229
-62 188 221 181 226
-63 224 182 218 240
-64 190 201 239 230
-65 231 210 213 197
-66 198 211 238 230
-67 190 201 239 230
-68 188 157 213 174
-69 232 203 215 239
-70 187 234 228 196
-71 147 149 183 195
-72 133 211 182 151
-73 187 156 202 173
-74 167 149 150 131
-75 233 214 225 229
-76 232 217 240 175
-77 203 173 141 218
-78 133 166 148 141
-79 169 204 139 219
-80 158 224 192 238
-81 154 138 171 193
-82 124 137 127 129
-83 155 134 172 194
-84 223 148 236 184
-85 212 169 152 185
-86 224 182 218 240
-87 233 214 225 229
-88 198 211 238 230
-89 132 210 181 150
-90 188 221 181 226
-91 166 222 202 237
-92 165 146 139 131
-93 232 203 215 239
-94 231 210 213 197
-95 145 138 130 153
-96 209 145 180 129
-97 122 134 162 142
-98 144 124 130 164
-99 121 122 123 126
-100 167 214 197 219
-101 178 127 161 207
-102 200 170 193 161
-103 135 125 160 205
-104 221 233 204 140
-105 199 160 194 216
-106 220 200 179 137
-107 236 171 228 207
-108 227 195 163 185
-109 154 223 237 164
-110 155 177 126 206
-111 144 178 222 234
-112 146 235 183 206
-113 170 153 186 208
-114 121 125 136 128
-115 143 165 177 212
-116 143 123 135 163
-117 235 172 205 227
-118 220 199 136 180
-119 209 216 162 186
-120 179 128 142 208
-121 99 1 2 114
-122 99 1 4 97
-123 99 1 5 116
-124 3 82 6 98
-125 11 2 103 114
-126 99 110 1 12
-127 13 101 3 82
-128 2 14 114 120
-129 3 15 82 96
-130 6 7 95 98
-131 92 16 8 74
-132 56 89 17 9
-133 78 72 18 10
-134 24 4 83 97
-135 11 103 5 116
-136 2 114 29 118
-137 3 82 106 30
-138 23 81 7 95
-139 79 92 8 31
-140 56 104 9 32
-141 33 77 78 10
-142 14 4 97 120
-143 34 5 115 116
-144 111 35 6 98
-145 15 7 95 96
-146 112 36 92 8
-147 56 71 19 9
-148 78 37 84 10
-149 16 71 19 74
-150 89 16 17 74
-151 55 72 18 20
-152 56 85 9 21
-153 22 113 7 95
-154 23 81 38 109
-155 110 12 24 83
-156 25 39 73 54
-157 45 68 26 40
-158 80 27 41 52
-159 44 28 42 43
-160 11 47 103 105
-161 13 46 101 102
-162 57 4 97 119
-163 48 5 116 108
-164 38 6 98 109
-165 34 92 115 8
-166 78 91 53 10
-167 100 16 50 74
-168 55 39 20 54
-169 79 85 31 21
-170 22 46 102 113
-171 23 58 81 107
-172 24 59 83 117
-173 33 77 25 73
-174 68 26 27 52
-175 27 60 52 76
-176 44 28 61 51
-177 110 12 34 115
-178 111 13 35 101
-179 14 106 30 120
-180 15 29 96 118
-181 89 90 17 62
-182 72 18 63 86
-183 112 36 71 19
-184 55 37 84 20
-185 48 85 108 21
-186 22 57 113 119
-187 25 70 49 73
-188 68 90 26 62
-189 27 61 51 52
-190 44 67 28 64
-191 45 40 42 43
-192 44 80 28 41
-193 23 46 102 81
-194 24 47 83 105
-195 48 71 19 108
-196 55 70 49 20
-197 100 50 94 65
-198 66 88 39 54
-199 47 105 29 118
-200 46 102 106 30
-201 45 67 40 64
-202 25 91 73 53
-203 33 77 69 93
-204 79 104 31 32
-205 11 59 103 117
-206 110 12 112 36
-207 13 101 58 107
-208 22 14 113 120
-209 57 15 96 119
-210 89 17 94 65
-211 66 88 72 18
-212 34 115 85 21
-213 68 26 94 65
-214 100 50 75 87
-215 69 93 39 54
-216 57 47 105 119
-217 45 60 40 76
-218 33 77 63 86
-219 100 79 50 31
-220 29 106 30 118
-221 90 104 62 32
-222 111 35 91 53
-223 37 38 84 109
-224 80 41 63 86
-225 42 75 43 87
-226 90 62 42 43
-227 48 59 117 108
-228 58 70 49 107
-229 61 51 75 87
-230 66 88 67 64
-231 61 94 51 65
-232 69 60 93 76
-233 104 75 32 87
-234 111 35 70 49
-235 112 36 59 117
-236 58 37 84 107
-237 91 38 53 109
-238 66 88 80 41
-239 67 69 93 64
-240 60 63 86 76
0