[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 118 ] =
SDD(W(30,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {112, 125}, {102, 127}, {100, 126}, {102, 124}, {100, 121}, {100,
122}, {100, 123}, {93, 122}, {72, 121}, {72, 125}, {69, 127}, {66, 126}, {52,
124}, {47, 123}, {9, 125}, {10, 126}, {11, 127}, {1, 121}, {1, 123}, {6, 124},
{1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124},
{4, 132}, {5, 133}, {6, 134}, {12, 140}, {16, 144}, {17, 145}, {29, 157}, {104,
232}, {91, 218}, {104, 233}, {2, 128}, {3, 129}, {8, 138}, {87, 213}, {91, 217},
{107, 233}, {26, 153}, {71, 196}, {99, 224}, {30, 154}, {56, 188}, {82, 214},
{83, 215}, {88, 220}, {2, 135}, {117, 240}, {71, 194}, {59, 190}, {58, 191},
{45, 168}, {7, 130}, {19, 150}, {77, 200}, {79, 202}, {97, 228}, {8, 142}, {70,
192}, {63, 185}, {18, 148}, {92, 218}, {8, 143}, {71, 192}, {49, 182}, {12,
139}, {78, 201}, {104, 239}, {32, 168}, {33, 169}, {34, 170}, {39, 175}, {85,
221}, {90, 210}, {5, 140}, {7, 142}, {21, 156}, {25, 144}, {36, 173}, {76, 197},
{104, 225}, {36, 174}, {62, 180}, {86, 220}, {96, 234}, {3, 136}, {51, 184}, {6,
141}, {8, 131}, {27, 144}, {31, 148}, {34, 169}, {90, 209}, {107, 224}, {9,
133}, {61, 177}, {53, 185}, {12, 128}, {13, 129}, {14, 130}, {15, 131}, {20,
152}, {44, 160}, {105, 229}, {107, 231}, {111, 227}, {28, 145}, {67, 206}, {61,
176}, {46, 163}, {30, 147}, {7, 137}, {35, 173}, {81, 223}, {85, 219}, {105,
231}, {108, 226}, {4, 139}, {16, 159}, {29, 146}, {45, 162}, {95, 208}, {43,
187}, {64, 208}, {46, 191}, {117, 228}, {20, 134}, {48, 162}, {21, 135}, {37,
183}, {39, 181}, {40, 186}, {24, 139}, {24, 140}, {25, 141}, {13, 152}, {115,
230}, {65, 212}, {15, 154}, {26, 143}, {38, 179}, {85, 192}, {27, 141}, {49,
167}, {78, 216}, {79, 217}, {83, 197}, {14, 153}, {19, 132}, {37, 178}, {16,
136}, {115, 235}, {54, 174}, {51, 171}, {50, 170}, {24, 128}, {84, 204}, {5,
156}, {58, 163}, {55, 174}, {53, 172}, {7, 158}, {105, 240}, {78, 212}, {81,
203}, {6, 157}, {70, 221}, {54, 173}, {41, 178}, {76, 215}, {9, 149}, {10, 150},
{11, 151}, {15, 147}, {14, 147}, {119, 234}, {117, 232}, {70, 219}, {68, 217},
{23, 138}, {30, 131}, {32, 189}, {42, 183}, {81, 204}, {82, 207}, {92, 193},
{68, 218}, {4, 155}, {13, 146}, {22, 137}, {33, 190}, {109, 205}, {117, 213},
{115, 211}, {53, 148}, {98, 195}, {22, 180}, {76, 238}, {16, 179}, {48, 147},
{47, 140}, {28, 191}, {103, 196}, {106, 201}, {107, 200}, {70, 226}, {77, 233},
{78, 234}, {79, 235}, {84, 240}, {108, 200}, {20, 177}, {105, 204}, {30, 184},
{31, 185}, {21, 178}, {45, 138}, {87, 240}, {97, 198}, {12, 164}, {99, 203},
{48, 153}, {52, 157}, {96, 201}, {28, 182}, {68, 238}, {47, 133}, {29, 183},
{76, 230}, {77, 231}, {108, 199}, {13, 161}, {65, 237}, {64, 236}, {14, 162},
{17, 188}, {77, 224}, {103, 202}, {10, 164}, {11, 165}, {41, 135}, {26, 181},
{67, 236}, {10, 186}, {11, 187}, {28, 172}, {37, 149}, {81, 225}, {89, 233},
{103, 215}, {17, 160}, {18, 163}, {26, 171}, {38, 151}, {84, 229}, {89, 232},
{111, 222}, {48, 130}, {52, 134}, {31, 172}, {47, 156}, {40, 155}, {84, 231},
{86, 229}, {87, 228}, {108, 223}, {18, 166}, {43, 159}, {96, 212}, {18, 167},
{23, 162}, {41, 156}, {83, 230}, {86, 227}, {91, 238}, {89, 239}, {15, 184},
{17, 166}, {42, 157}, {85, 226}, {88, 239}, {25, 161}, {119, 207}, {118, 206},
{42, 146}, {89, 225}, {96, 216}, {9, 176}, {52, 141}, {86, 239}, {98, 219}, {27,
161}, {120, 194}, {111, 213}, {88, 227}, {19, 175}, {24, 164}, {25, 165}, {106,
214}, {39, 154}, {83, 238}, {88, 229}, {97, 220}, {110, 211}, {27, 165}, {32,
158}, {99, 221}, {23, 168}, {120, 199}, {114, 205}, {82, 237}, {87, 232}, {74,
138}, {112, 176}, {94, 159}, {114, 177}, {21, 209}, {119, 179}, {74, 142}, {40,
236}, {80, 148}, {74, 143}, {95, 154}, {43, 237}, {120, 190}, {93, 155}, {110,
168}, {31, 216}, {115, 180}, {72, 128}, {116, 188}, {73, 129}, {98, 170}, {74,
131}, {98, 169}, {22, 218}, {38, 234}, {103, 170}, {106, 167}, {94, 144}, {101,
171}, {29, 210}, {72, 135}, {44, 227}, {111, 160}, {101, 181}, {73, 152}, {120,
169}, {63, 237}, {116, 166}, {69, 151}, {110, 189}, {66, 150}, {116, 160}, {62,
235}, {92, 137}, {23, 193}, {93, 139}, {94, 136}, {22, 193}, {62, 230}, {20,
205}, {118, 175}, {93, 132}, {75, 145}, {109, 183}, {57, 226}, {73, 146}, {64,
155}, {59, 224}, {55, 235}, {56, 228}, {106, 182}, {19, 206}, {60, 225}, {97,
188}, {99, 190}, {65, 159}, {51, 236}, {109, 178}, {69, 165}, {119, 151}, {118,
150}, {34, 195}, {35, 194}, {36, 197}, {79, 174}, {33, 194}, {60, 223}, {35,
192}, {56, 220}, {58, 222}, {50, 215}, {116, 145}, {112, 149}, {33, 199}, {66,
164}, {59, 221}, {57, 223}, {91, 189}, {35, 196}, {75, 172}, {49, 214}, {36,
195}, {102, 129}, {37, 205}, {73, 161}, {67, 171}, {46, 198}, {92, 180}, {38,
207}, {63, 214}, {71, 173}, {114, 152}, {90, 176}, {95, 181}, {101, 143}, {82,
185}, {90, 177}, {45, 193}, {61, 209}, {53, 216}, {62, 211}, {94, 179}, {55,
217}, {102, 136}, {61, 210}, {113, 158}, {46, 222}, {63, 207}, {60, 204}, {59,
203}, {95, 175}, {110, 158}, {57, 200}, {44, 222}, {118, 132}, {32, 211}, {54,
197}, {80, 163}, {113, 130}, {75, 191}, {114, 134}, {54, 195}, {112, 133}, {50,
196}, {80, 166}, {39, 208}, {60, 203}, {80, 167}, {40, 208}, {66, 186}, {50,
202}, {49, 201}, {41, 209}, {42, 210}, {109, 149}, {113, 137}, {34, 219}, {68,
189}, {44, 213}, {64, 186}, {65, 187}, {67, 184}, {58, 198}, {101, 153}, {51,
206}, {55, 202}, {75, 182}, {56, 198}, {69, 187}, {57, 199}, {43, 212}, {113,
142} }>;
(II) A more general form is to represent the graph as the orbit of {112, 125}
under the group generated by the following permutations:
a: (62, 68)(91, 115)(180, 218)(189, 211)(217, 235)(230, 238) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (18, 28)(75, 80)(145, 166)(148, 172)(163, 191)(167, 182)
c: (57, 59)(99, 108)(190, 199)(200, 224)(203, 223)(221, 226)
d: (34, 35)(71, 98)(169, 194)(170, 196)(173, 195)(192, 219)
e: (63, 78)(82, 96)(185, 216)(201, 214)(207, 234)(212, 237)
f: (29, 42)
g: (87, 117)
h: (9, 21)(41, 112)(125, 135)(133, 156)(149, 178)(176, 209)
m: (36, 50)(54, 103)(170, 195)(173, 196)(174, 202)(197, 215)
n1: (14, 48)
a1: (32, 110)
b1: (38, 43)(65, 119)(151, 187)(159, 179)(207, 237)(212, 234)
c1: (4, 10)(66, 93)(122, 126)(132, 150)(139, 164)(155, 186)
d1: (23, 45)
e1: (15, 26)(30, 101)(131, 143)(147, 153)(154, 181)(171, 184)
f1: (84, 89)(104, 105)(204, 225)(229, 239)(231, 233)(232, 240)
g1: (28, 75)
h1: (7, 23)(45, 113)(130, 162)(137, 193)(138, 142)(158, 168)
m1: (70, 85)
n2: (60, 77)(81, 107)(200, 223)(203, 224)(204, 231)(225, 233)
a2: (78, 96)
b2: (33, 70)(85, 120)(169, 219)(190, 221)(192, 194)(199, 226)
c2: (89, 104)
d2: (31, 49)(53, 106)(148, 167)(172, 182)(185, 214)(201, 216)
e2: (22, 32)(92, 110)(137, 158)(168, 193)(180, 211)(189, 218)
f2: (55, 76)(79, 83)(174, 197)(202, 215)(217, 238)(230, 235)
g2: (6, 13)(52, 73)(124, 129)(134, 152)(141, 161)(146, 157)
h2: (68, 91)
m2: (11, 16)(69, 94)(127, 136)(144, 165)(151, 179)(159, 187)
n3: (37, 61)(90, 109)(149, 176)(177, 205)(178, 209)(183, 210)
a3: (35, 71)
b3: (44, 56)(97, 111)(160, 188)(198, 222)(213, 228)(220, 227)
c3: (5, 47)
d3: (56, 97)
e3: (49, 106)
f3: (39, 51)(67, 95)(154, 184)(171, 181)(175, 206)(208, 236)
g3: (86, 87)(88, 117)(213, 227)(220, 228)(229, 240)(232, 239)
h3: (13, 73)
m3: (46, 58)
n4: (2, 4)(3, 7)(5, 10)(6, 8)(9, 19)(11, 22)(13, 14)(15, 20)(16, 32)(17, 33)(18,
34)(21, 40)(23, 25)(26, 29)(27, 45)(28, 35)(30, 114)(31, 36)(37, 39)(38, 62)(41,
64)(42, 101)(43, 68)(44, 57)(46, 70)(47, 66)(48, 73)(49, 50)(51, 61)(52, 74)(53,
54)(55, 63)(56, 59)(58, 85)(60, 86)(65, 91)(67, 90)(69, 92)(71, 75)(72, 93)(76,
78)(77, 87)(79, 82)(80, 98)(81, 88)(83, 96)(94, 110)(95, 109)(97, 99)(102,
113)(103, 106)(107, 117)(108, 111)(112, 118)(115, 119)(116, 120)(121, 122)(123,
126)(124, 142)(125, 132)(127, 137)(128, 139)(129, 130)(131, 134)(133, 150)(135,
155)(136, 158)(138, 141)(140, 164)(143, 157)(144, 168)(145, 194)(146, 153)(147,
152)(148, 195)(149, 175)(151, 180)(154, 205)(156, 186)(159, 189)(160, 199)(161,
162)(163, 219)(165, 193)(166, 169)(167, 170)(171, 210)(172, 173)(174, 185)(176,
206)(177, 184)(178, 208)(179, 211)(181, 183)(182, 196)(187, 218)(188, 190)(191,
192)(197, 216)(198, 221)(200, 213)(201, 215)(202, 214)(203, 220)(204, 229)(207,
235)(209, 236)(212, 238)(217, 237)(222, 226)(223, 227)(224, 228)(225, 239)(230,
234)(231, 240)(232, 233)
a4: (25, 27)
b4: (26, 101)
c4: (43, 65)
d4: (76, 83)
e4: (51, 67)
f4: (40, 64)
g4: (3, 25)(27, 102)(124, 141)(127, 165)(129, 161)(136, 144)
h4: (20, 29)(42, 114)(134, 157)(146, 152)(177, 210)(183, 205)
m4: (10, 66)
n5: (16, 94)
a5: (77, 107)
b5: (61, 90)
c5: (17, 46)(58, 116)(145, 191)(160, 222)(163, 166)(188, 198)
d5: (59, 99)
e5: (50, 103)
f5: (12, 24)
g5: (8, 14)(48, 74)(130, 142)(131, 147)(138, 162)(143, 153)
h5: (21, 41)
m5: (1, 2)(3, 8)(4, 9)(5, 12)(6, 15)(7, 11)(10, 21)(13, 26)(14, 25)(16, 23)(17,
34)(18, 36)(19, 37)(20, 39)(22, 38)(24, 47)(27, 48)(28, 50)(29, 51)(30, 52)(31,
55)(32, 43)(33, 44)(35, 46)(40, 61)(41, 66)(42, 67)(45, 94)(49, 76)(53, 79)(54,
80)(56, 70)(57, 86)(58, 71)(59, 87)(60, 84)(62, 63)(64, 90)(65, 110)(68, 78)(69,
113)(72, 100)(73, 101)(74, 102)(75, 103)(77, 89)(81, 105)(82, 115)(83, 106)(85,
97)(88, 108)(91, 96)(92, 119)(93, 112)(95, 114)(98, 116)(99, 117)(104, 107)(109,
118)(111, 120)(122, 125)(123, 128)(124, 131)(126, 135)(127, 142)(129, 143)(130,
165)(132, 149)(133, 139)(134, 154)(136, 138)(137, 151)(141, 147)(144, 162)(145,
170)(146, 171)(148, 174)(150, 178)(152, 181)(153, 161)(155, 176)(156, 164)(157,
184)(158, 187)(159, 168)(160, 169)(163, 173)(166, 195)(167, 197)(172, 202)(175,
205)(177, 208)(179, 193)(180, 207)(182, 215)(183, 206)(185, 235)(186, 209)(188,
219)(189, 212)(190, 213)(191, 196)(192, 198)(194, 222)(199, 227)(200, 239)(201,
238)(203, 240)(210, 236)(211, 237)(214, 230)(216, 217)(218, 234)(220, 226)(221,
228)(223, 229)(224, 232)(225, 231)
n6: (19, 40)(64, 118)(132, 155)(150, 186)(175, 208)(206, 236)
C4[ 240, 118 ]
240
-1 121 122 123 126
-2 121 135 125 128
-3 124 136 127 129
-4 132 122 155 139
-5 133 123 156 140
-6 134 124 157 141
-7 158 137 130 142
-8 143 138 131 142
-9 176 133 125 149
-10 126 150 164 186
-11 165 187 127 151
-12 128 139 140 164
-13 146 161 129 152
-14 147 162 130 153
-15 154 147 184 131
-16 144 179 136 159
-17 166 188 145 160
-18 166 167 148 163
-19 132 150 206 175
-20 177 134 205 152
-21 209 156 178 135
-22 180 137 193 218
-23 168 138 193 162
-24 128 139 140 164
-25 165 144 161 141
-26 143 181 171 153
-27 165 144 161 141
-28 145 191 182 172
-29 210 146 157 183
-30 154 147 184 131
-31 148 172 216 185
-32 189 211 168 158
-33 199 190 169 194
-34 169 170 195 219
-35 192 194 173 196
-36 173 195 174 197
-37 178 149 183 205
-38 179 234 151 207
-39 154 181 175 208
-40 155 236 186 208
-41 209 156 178 135
-42 210 146 157 183
-43 187 212 159 237
-44 222 213 160 227
-45 168 138 193 162
-46 198 222 191 163
-47 133 123 156 140
-48 147 162 130 153
-49 167 201 214 182
-50 202 170 215 196
-51 236 171 184 206
-52 134 124 157 141
-53 148 172 216 185
-54 173 195 174 197
-55 202 235 217 174
-56 198 220 188 228
-57 199 200 223 226
-58 198 222 191 163
-59 221 190 224 203
-60 223 203 225 204
-61 176 209 177 210
-62 211 180 235 230
-63 214 237 185 207
-64 155 236 186 208
-65 187 212 159 237
-66 126 150 164 186
-67 236 171 184 206
-68 189 238 217 218
-69 165 187 127 151
-70 221 192 226 219
-71 192 194 173 196
-72 121 135 125 128
-73 146 161 129 152
-74 143 138 131 142
-75 145 191 182 172
-76 215 238 197 230
-77 231 200 233 224
-78 201 212 234 216
-79 202 235 217 174
-80 166 167 148 163
-81 223 203 225 204
-82 214 237 185 207
-83 215 238 197 230
-84 231 204 229 240
-85 221 192 226 219
-86 220 227 239 229
-87 232 213 228 240
-88 220 227 239 229
-89 232 233 225 239
-90 176 209 177 210
-91 189 238 217 218
-92 180 137 193 218
-93 132 122 155 139
-94 144 179 136 159
-95 154 181 175 208
-96 201 212 234 216
-97 198 220 188 228
-98 169 170 195 219
-99 221 190 224 203
-100 121 122 123 126
-101 143 181 171 153
-102 124 136 127 129
-103 202 170 215 196
-104 232 233 225 239
-105 231 204 229 240
-106 167 201 214 182
-107 231 200 233 224
-108 199 200 223 226
-109 178 149 183 205
-110 189 211 168 158
-111 222 213 160 227
-112 176 133 125 149
-113 158 137 130 142
-114 177 134 205 152
-115 211 180 235 230
-116 166 188 145 160
-117 232 213 228 240
-118 132 150 206 175
-119 179 234 151 207
-120 199 190 169 194
-121 1 100 2 72
-122 1 100 4 93
-123 1 100 47 5
-124 3 102 6 52
-125 2 112 72 9
-126 66 1 100 10
-127 11 3 69 102
-128 12 2 24 72
-129 13 3 102 73
-130 14 113 48 7
-131 15 8 30 74
-132 4 93 19 118
-133 112 47 5 9
-134 114 6 52 20
-135 2 72 41 21
-136 3 102 16 94
-137 22 113 92 7
-138 23 45 8 74
-139 12 24 4 93
-140 12 24 47 5
-141 25 27 6 52
-142 113 7 8 74
-143 101 26 8 74
-144 25 16 27 94
-145 17 28 116 75
-146 13 29 73 42
-147 14 15 48 30
-148 80 18 31 53
-149 112 37 9 109
-150 66 19 118 10
-151 11 69 38 119
-152 13 114 73 20
-153 101 14 26 48
-154 15 39 95 30
-155 4 93 40 64
-156 47 5 41 21
-157 6 29 52 42
-158 110 113 7 32
-159 16 94 43 65
-160 44 111 17 116
-161 13 25 27 73
-162 23 45 14 48
-163 46 58 80 18
-164 66 12 24 10
-165 11 25 69 27
-166 80 17 116 18
-167 80 49 18 106
-168 110 23 45 32
-169 33 34 98 120
-170 34 103 50 98
-171 67 101 26 51
-172 28 31 53 75
-173 35 36 71 54
-174 55 79 36 54
-175 39 95 19 118
-176 90 112 61 9
-177 90 114 61 20
-178 37 41 21 109
-179 16 38 94 119
-180 22 92 115 62
-181 101 26 39 95
-182 49 28 106 75
-183 37 29 42 109
-184 67 15 51 30
-185 82 63 31 53
-186 66 40 64 10
-187 11 69 43 65
-188 56 17 116 97
-189 110 68 91 32
-190 33 99 59 120
-191 46 58 28 75
-192 35 70 71 85
-193 22 23 45 92
-194 33 35 71 120
-195 34 36 54 98
-196 35 103 71 50
-197 36 83 54 76
-198 56 46 58 97
-199 33 57 108 120
-200 77 57 107 108
-201 78 49 106 96
-202 55 79 103 50
-203 99 59 81 60
-204 81 60 105 84
-205 37 114 20 109
-206 67 51 19 118
-207 38 82 63 119
-208 39 40 95 64
-209 90 61 41 21
-210 90 61 29 42
-211 110 115 62 32
-212 78 96 43 65
-213 44 111 117 87
-214 49 82 106 63
-215 103 50 83 76
-216 78 96 31 53
-217 55 68 79 91
-218 22 68 91 92
-219 34 70 85 98
-220 88 56 86 97
-221 99 59 70 85
-222 44 111 46 58
-223 57 81 60 108
-224 77 99 59 107
-225 89 81 60 104
-226 57 70 85 108
-227 44 88 111 86
-228 56 117 97 87
-229 88 105 84 86
-230 115 83 62 76
-231 77 105 84 107
-232 89 104 117 87
-233 77 89 104 107
-234 78 38 96 119
-235 55 79 115 62
-236 67 40 51 64
-237 82 63 43 65
-238 68 91 83 76
-239 88 89 104 86
-240 105 84 117 87
0