C4graphGraph forms for C4 [ 240, 121 ] = XI(Rmap(120,137){4,10|6}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 121 ] = XI(Rmap(120,137){4,10|6}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {115, 126}, {102, 127}, {94, 123}, {78, 122}, {58, 124}, {53, 127}, {50, 121}, {44, 124}, {38, 125}, {25, 121}, {25, 123}, {19, 122}, {19, 126}, {12, 126}, {13, 127}, {11, 125}, {10, 125}, {1, 121}, {1, 123}, {6, 124}, {1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124}, {20, 148}, {62, 190}, {61, 189}, {21, 149}, {22, 150}, {23, 151}, {24, 152}, {23, 150}, {73, 200}, {62, 191}, {60, 189}, {24, 153}, {27, 154}, {29, 156}, {2, 128}, {66, 192}, {63, 189}, {62, 188}, {57, 187}, {56, 186}, {3, 129}, {4, 134}, {5, 135}, {20, 150}, {25, 155}, {31, 157}, {10, 137}, {52, 183}, {49, 178}, {26, 153}, {8, 140}, {70, 194}, {69, 193}, {9, 141}, {21, 145}, {103, 227}, {111, 235}, {7, 130}, {41, 172}, {97, 231}, {109, 235}, {28, 155}, {59, 188}, {53, 178}, {84, 211}, {101, 226}, {9, 129}, {26, 146}, {27, 147}, {80, 216}, {86, 222}, {105, 225}, {110, 230}, {3, 138}, {48, 185}, {76, 197}, {78, 199}, {85, 220}, {88, 209}, {109, 228}, {4, 142}, {73, 195}, {5, 143}, {93, 215}, {109, 231}, {2, 137}, {55, 188}, {8, 131}, {15, 132}, {38, 173}, {77, 198}, {94, 213}, {107, 224}, {7, 139}, {57, 181}, {56, 180}, {30, 146}, {110, 226}, {9, 132}, {11, 134}, {87, 218}, {97, 236}, {100, 233}, {105, 228}, {107, 230}, {111, 226}, {6, 136}, {14, 128}, {15, 129}, {44, 162}, {74, 196}, {10, 133}, {55, 184}, {19, 156}, {106, 229}, {51, 163}, {117, 229}, {79, 223}, {12, 157}, {112, 225}, {49, 160}, {14, 159}, {16, 130}, {119, 229}, {113, 227}, {68, 214}, {58, 168}, {17, 131}, {13, 158}, {22, 130}, {69, 208}, {120, 237}, {71, 210}, {6, 144}, {120, 238}, {67, 213}, {7, 145}, {18, 132}, {19, 133}, {30, 136}, {41, 191}, {82, 196}, {46, 185}, {70, 209}, {65, 214}, {64, 215}, {103, 240}, {31, 135}, {120, 224}, {115, 235}, {37, 189}, {40, 176}, {104, 240}, {10, 147}, {66, 219}, {33, 184}, {8, 146}, {63, 165}, {28, 134}, {29, 135}, {41, 179}, {43, 177}, {113, 234}, {116, 239}, {37, 185}, {72, 212}, {30, 131}, {88, 197}, {63, 161}, {120, 230}, {83, 205}, {95, 193}, {112, 239}, {117, 234}, {4, 164}, {118, 214}, {116, 212}, {5, 165}, {6, 166}, {7, 167}, {8, 168}, {9, 169}, {20, 180}, {96, 192}, {16, 177}, {18, 179}, {103, 198}, {12, 174}, {114, 208}, {13, 175}, {23, 181}, {107, 201}, {17, 178}, {116, 215}, {22, 181}, {79, 236}, {102, 197}, {67, 231}, {70, 226}, {69, 225}, {26, 191}, {85, 240}, {101, 192}, {11, 173}, {114, 212}, {22, 177}, {40, 143}, {48, 151}, {32, 136}, {118, 222}, {114, 218}, {54, 158}, {33, 137}, {34, 138}, {35, 139}, {36, 140}, {37, 141}, {96, 200}, {98, 202}, {99, 203}, {39, 142}, {68, 237}, {49, 152}, {100, 205}, {28, 182}, {113, 219}, {73, 227}, {60, 150}, {58, 144}, {51, 153}, {29, 183}, {51, 152}, {34, 142}, {65, 237}, {96, 204}, {44, 129}, {117, 216}, {111, 194}, {52, 154}, {117, 219}, {116, 218}, {115, 221}, {59, 149}, {77, 227}, {79, 225}, {108, 194}, {110, 192}, {15, 160}, {119, 216}, {104, 199}, {61, 141}, {85, 229}, {89, 233}, {90, 234}, {98, 210}, {16, 161}, {112, 193}, {18, 163}, {92, 237}, {43, 153}, {50, 128}, {45, 159}, {90, 232}, {92, 238}, {93, 239}, {107, 217}, {111, 221}, {17, 162}, {24, 171}, {87, 228}, {82, 230}, {119, 195}, {81, 228}, {89, 236}, {26, 172}, {61, 139}, {58, 140}, {53, 131}, {88, 238}, {105, 223}, {106, 220}, {35, 148}, {112, 199}, {45, 154}, {95, 232}, {28, 164}, {29, 165}, {30, 166}, {81, 233}, {41, 144}, {43, 146}, {83, 234}, {94, 231}, {46, 148}, {54, 140}, {47, 149}, {23, 172}, {42, 145}, {27, 167}, {87, 235}, {98, 222}, {114, 207}, {14, 176}, {32, 158}, {45, 147}, {78, 240}, {21, 170}, {119, 200}, {53, 138}, {42, 149}, {78, 142}, {15, 206}, {20, 213}, {86, 151}, {105, 168}, {21, 214}, {69, 134}, {27, 216}, {91, 152}, {16, 212}, {64, 132}, {31, 218}, {84, 145}, {101, 160}, {47, 233}, {110, 169}, {66, 138}, {118, 190}, {38, 239}, {102, 175}, {106, 163}, {36, 238}, {95, 147}, {102, 170}, {103, 171}, {65, 143}, {106, 164}, {24, 215}, {80, 128}, {87, 135}, {88, 136}, {99, 179}, {94, 143}, {99, 177}, {73, 159}, {84, 130}, {91, 141}, {96, 182}, {109, 187}, {71, 158}, {50, 232}, {83, 137}, {95, 133}, {97, 187}, {100, 190}, {11, 208}, {70, 157}, {25, 194}, {100, 191}, {60, 224}, {118, 170}, {98, 190}, {12, 209}, {115, 174}, {14, 211}, {17, 204}, {18, 207}, {86, 139}, {68, 154}, {104, 182}, {13, 210}, {72, 151}, {67, 156}, {63, 224}, {55, 232}, {75, 148}, {101, 186}, {42, 202}, {43, 203}, {44, 204}, {46, 206}, {80, 176}, {36, 197}, {62, 223}, {61, 220}, {56, 217}, {38, 199}, {40, 201}, {33, 195}, {40, 202}, {47, 205}, {37, 198}, {39, 196}, {48, 211}, {47, 203}, {74, 174}, {72, 172}, {59, 223}, {71, 162}, {34, 196}, {76, 170}, {90, 188}, {92, 186}, {93, 187}, {46, 198}, {92, 180}, {93, 181}, {57, 208}, {72, 161}, {60, 213}, {77, 164}, {79, 166}, {91, 178}, {108, 133}, {74, 160}, {75, 161}, {39, 204}, {64, 171}, {54, 221}, {33, 205}, {35, 206}, {84, 185}, {48, 222}, {113, 159}, {75, 165}, {76, 162}, {77, 163}, {39, 200}, {54, 217}, {59, 203}, {74, 186}, {108, 156}, {32, 209}, {65, 176}, {56, 201}, {86, 167}, {91, 169}, {31, 236}, {68, 183}, {64, 179}, {50, 193}, {99, 144}, {104, 155}, {55, 195}, {67, 183}, {66, 182}, {76, 184}, {89, 173}, {90, 175}, {57, 207}, {80, 167}, {108, 155}, {42, 210}, {32, 217}, {34, 219}, {36, 221}, {81, 168}, {82, 169}, {51, 207}, {81, 173}, {82, 174}, {83, 175}, {97, 157}, {52, 201}, {45, 211}, {52, 202}, {85, 171}, {35, 220}, {71, 184}, {49, 206}, {75, 180}, {89, 166} }>;

(II) A more general form is to represent the graph as the orbit of {115, 126} under the group generated by the following permutations:

a: (3, 44)(13, 71)(17, 53)(33, 83)(34, 39)(55, 90)(66, 96)(73, 113)(76, 102)(117, 119)(127, 162)(138, 204)(175, 184)(195, 234)(200, 219)
b: (13, 102)(21, 42)(32, 88)(36, 54)(40, 65)(52, 68)(56, 92)(71, 76)(98, 118)(107, 120)(158, 197)(170, 210)(201, 237)(202, 214)(217, 238)
c: (5, 94)(16, 22)(20, 75)(23, 72)(29, 67)(31, 97)(57, 114)(60, 63)(87, 109)(93, 116)(135, 231)(150, 161)(165, 213)(181, 212)(187, 218)
d: (1, 2, 25, 50)(3, 30)(4, 11, 28, 69)(5, 80, 94, 14)(6, 53)(7, 20, 84, 75)(8, 44)(9, 26)(10, 108, 95, 19)(12, 83, 70, 90)(13, 32)(15, 43)(16, 35, 22, 46)(17, 58)(18, 51)(21, 92)(23, 37, 72, 61)(24, 64)(27, 67, 45, 29)(31, 117, 97, 113)(33, 111, 55, 115)(34, 89, 66, 79)(36, 76)(38, 104, 112, 78)(39, 81, 96, 105)(41, 91)(42, 56)(47, 101, 59, 74)(48, 63, 86, 60)(49, 99)(54, 71)(57, 77, 114, 106)(62, 82, 100, 110)(73, 87, 119, 109)(85, 93, 103, 116)(88, 102)(98, 107)(118, 120)(122, 125, 155, 193)(123, 128)(124, 131)(126, 137, 194, 232)(127, 136)(129, 146)(130, 148)(132, 153)(135, 216, 231, 159)(138, 166)(139, 150, 185, 161)(140, 162)(141, 172)(142, 173, 182, 225)(143, 176)(144, 178)(145, 180)(147, 156)(149, 186)(151, 189)(152, 179)(154, 183)(157, 234)(160, 203)(163, 207)(164, 208)(165, 167, 213, 211)(168, 204)(169, 191)(170, 238)(171, 215)(174, 205, 226, 188)(175, 209)(177, 206)(181, 198, 212, 220)(184, 221)(187, 227, 218, 229)(190, 230)(192, 223, 196, 233)(195, 235)(200, 228)(201, 202)(210, 217)(214, 237)(219, 236)(222, 224)(239, 240)
e: (2, 50)(6, 58)(8, 30)(10, 95)(11, 69)(12, 115)(31, 87)(32, 54)(33, 55)(36, 88)(38, 112)(47, 59)(62, 100)(70, 111)(79, 81)(83, 90)(89, 105)(97, 109)(125, 193)(136, 140)(137, 232)(157, 235)(166, 168)(173, 225)(188, 205)(209, 221)(223, 233)(228, 236)
f: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 24)(10, 29)(11, 31)(13, 37)(14, 40)(15, 44)(16, 47)(17, 49)(20, 55)(22, 59)(23, 62)(27, 68)(28, 70)(30, 51)(32, 77)(33, 75)(34, 82)(35, 76)(36, 85)(38, 87)(39, 74)(42, 84)(45, 52)(46, 71)(48, 98)(50, 94)(53, 91)(54, 103)(56, 73)(57, 79)(58, 64)(60, 90)(61, 102)(63, 83)(65, 80)(66, 110)(67, 95)(69, 97)(72, 100)(78, 115)(81, 116)(86, 118)(88, 106)(89, 114)(92, 119)(93, 105)(96, 101)(104, 111)(107, 113)(109, 112)(117, 120)(121, 123)(122, 126)(124, 132)(125, 135)(127, 141)(128, 143)(130, 149)(131, 152)(133, 156)(134, 157)(136, 163)(137, 165)(138, 169)(139, 170)(140, 171)(142, 174)(144, 179)(146, 153)(147, 183)(148, 184)(150, 188)(151, 190)(155, 194)(158, 198)(159, 201)(160, 204)(161, 205)(162, 206)(164, 209)(166, 207)(167, 214)(168, 215)(172, 191)(173, 218)(175, 189)(177, 203)(180, 195)(181, 223)(182, 226)(185, 210)(186, 200)(187, 225)(193, 231)(197, 220)(199, 235)(202, 211)(208, 236)(212, 233)(213, 232)(216, 237)(217, 227)(219, 230)(221, 240)(224, 234)(228, 239)(229, 238)
g: (2, 50)(10, 95)(11, 69)(33, 55)(38, 112)(47, 59)(62, 100)(79, 89)(81, 105)(83, 90)(125, 193)(137, 232)(173, 225)(188, 205)(223, 233)
h: (3, 53)(6, 30)(8, 58)(9, 49)(15, 91)(17, 44)(18, 51)(20, 60)(24, 64)(26, 41)(35, 61)(37, 46)(43, 99)(56, 107)(63, 75)(74, 82)(92, 120)(101, 110)(124, 131)(129, 178)(132, 152)(141, 206)(144, 146)(148, 189)(153, 179)(160, 169)(180, 224)(186, 230)
m: (4, 78)(11, 38)(18, 64)(24, 51)(28, 104)(57, 93)(69, 112)(77, 103)(85, 106)(114, 116)(134, 199)(163, 171)(164, 240)(207, 215)(208, 239)
n1: (9, 15)(20, 60)(35, 61)(37, 46)(49, 91)(56, 107)(63, 75)(74, 82)(92, 120)(101, 110)(141, 206)(148, 189)(160, 169)(180, 224)(186, 230)
a1: (2, 78)(3, 7, 44, 84)(4, 50)(5, 115)(6, 22)(8, 72)(9, 21)(10, 104)(11, 112)(12, 94)(13, 35, 71, 46)(14, 34, 80, 39)(15, 42)(16, 58)(17, 48, 53, 86)(18, 59)(19, 25)(20, 32)(23, 30)(24, 100)(27, 96, 45, 66)(28, 95)(29, 111)(31, 109)(33, 103, 83, 85)(36, 63)(37, 102, 61, 76)(40, 74)(41, 43)(47, 64)(49, 98)(51, 62)(52, 101)(54, 75)(55, 77, 90, 106)(57, 79)(60, 88)(65, 82)(67, 70)(68, 110)(73, 113, 117, 119)(81, 116)(89, 93)(91, 118)(92, 107)(105, 114)(121, 122)(123, 126)(124, 130)(125, 199)(127, 139, 162, 185)(128, 142)(129, 145)(131, 151)(132, 149)(133, 155)(134, 193)(135, 235)(136, 150)(137, 240)(138, 167, 204, 211)(140, 161)(141, 170)(143, 174)(144, 177)(146, 172)(147, 182)(148, 158)(152, 190)(153, 191)(154, 192)(156, 194)(157, 231)(159, 219, 216, 200)(160, 202)(163, 188)(164, 232)(165, 221)(166, 181)(168, 212)(169, 214)(171, 205)(173, 239)(175, 220, 184, 198)(176, 196)(178, 222)(179, 203)(180, 217)(183, 226)(186, 201)(187, 236)(189, 197)(195, 227, 234, 229)(206, 210)(207, 223)(208, 225)(209, 213)(215, 233)(218, 228)(224, 238)(230, 237)
b1: (7, 86)(16, 72)(21, 118)(22, 23)(26, 43)(41, 99)(42, 98)(47, 100)(48, 84)(59, 62)(130, 151)(145, 222)(149, 190)(172, 177)(191, 203)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 121 ]
240
-1 121 122 123 126
-2 121 125 137 128
-3 124 127 138 129
-4 122 134 142 164
-5 143 165 123 135
-6 144 166 124 136
-7 145 167 139 130
-8 146 168 140 131
-9 132 169 129 141
-10 133 125 147 137
-11 134 125 173 208
-12 209 157 126 174
-13 210 158 127 175
-14 176 211 159 128
-15 132 160 129 206
-16 177 212 161 130
-17 178 204 162 131
-18 132 179 163 207
-19 122 133 156 126
-20 180 213 148 150
-21 145 170 214 149
-22 177 181 150 130
-23 181 150 172 151
-24 171 215 152 153
-25 121 155 123 194
-26 146 191 172 153
-27 154 167 147 216
-28 155 134 182 164
-29 165 156 135 183
-30 166 146 136 131
-31 135 157 236 218
-32 209 136 158 217
-33 137 205 184 195
-34 138 196 142 219
-35 220 148 139 206
-36 221 238 140 197
-37 198 189 141 185
-38 199 125 173 239
-39 200 204 196 142
-40 143 176 201 202
-41 144 179 191 172
-42 210 145 202 149
-43 177 146 203 153
-44 124 204 129 162
-45 154 211 147 159
-46 198 148 206 185
-47 233 203 149 205
-48 211 222 151 185
-49 178 160 206 152
-50 121 232 193 128
-51 152 163 207 153
-52 154 201 202 183
-53 178 127 138 131
-54 221 158 140 217
-55 188 232 184 195
-56 201 180 217 186
-57 187 181 207 208
-58 144 124 168 140
-59 188 223 203 149
-60 189 213 224 150
-61 220 189 139 141
-62 188 190 223 191
-63 165 189 224 161
-64 132 179 171 215
-65 143 176 214 237
-66 192 138 182 219
-67 231 156 213 183
-68 154 214 237 183
-69 134 225 193 208
-70 209 157 226 194
-71 210 158 162 184
-72 212 161 172 151
-73 200 159 227 195
-74 160 174 196 186
-75 165 180 148 161
-76 170 162 184 197
-77 198 227 163 164
-78 122 199 240 142
-79 166 223 225 236
-80 176 167 128 216
-81 233 168 173 228
-82 169 174 196 230
-83 234 137 205 175
-84 145 211 130 185
-85 220 171 229 240
-86 167 222 139 151
-87 135 235 228 218
-88 209 136 238 197
-89 166 233 236 173
-90 188 232 234 175
-91 178 169 141 152
-92 180 237 238 186
-93 187 181 215 239
-94 143 231 123 213
-95 133 232 147 193
-96 200 192 182 204
-97 187 231 157 236
-98 210 222 190 202
-99 144 177 179 203
-100 233 190 191 205
-101 192 160 226 186
-102 170 127 175 197
-103 198 171 227 240
-104 155 199 182 240
-105 168 223 225 228
-106 220 163 229 164
-107 201 224 217 230
-108 133 155 156 194
-109 187 231 235 228
-110 169 192 226 230
-111 221 235 226 194
-112 199 225 193 239
-113 234 159 227 219
-114 212 207 218 208
-115 221 235 126 174
-116 212 215 239 218
-117 234 216 229 219
-118 222 190 170 214
-119 200 216 195 229
-120 224 237 238 230
-121 1 2 25 50
-122 1 78 4 19
-123 1 25 5 94
-124 44 3 58 6
-125 11 2 38 10
-126 1 12 115 19
-127 13 3 102 53
-128 2 14 80 50
-129 44 3 15 9
-130 22 16 7 84
-131 17 8 30 53
-132 15 18 9 64
-133 95 19 108 10
-134 11 69 4 28
-135 5 29 31 87
-136 88 6 30 32
-137 33 2 83 10
-138 66 34 3 53
-139 35 61 7 86
-140 36 58 8 54
-141 91 37 61 9
-142 34 78 4 39
-143 5 94 40 65
-144 99 58 6 41
-145 7 84 42 21
-146 26 8 30 43
-147 45 27 95 10
-148 35 46 20 75
-149 47 59 42 21
-150 22 23 60 20
-151 23 48 72 86
-152 24 91 49 51
-153 24 26 51 43
-154 45 68 27 52
-155 25 104 28 108
-156 67 29 19 108
-157 12 70 31 97
-158 13 71 32 54
-159 45 14 113 73
-160 101 15 49 74
-161 16 72 63 75
-162 44 71 17 76
-163 77 18 51 106
-164 77 4 28 106
-165 5 29 63 75
-166 89 79 6 30
-167 80 27 7 86
-168 58 81 105 8
-169 110 91 82 9
-170 102 118 21 76
-171 24 103 85 64
-172 23 26 72 41
-173 11 89 81 38
-174 12 82 115 74
-175 13 90 102 83
-176 14 80 40 65
-177 22 99 16 43
-178 91 49 17 53
-179 99 18 41 64
-180 56 92 20 75
-181 22 23 57 93
-182 66 104 28 96
-183 67 68 29 52
-184 33 55 71 76
-185 46 37 48 84
-186 56 101 92 74
-187 57 93 97 109
-188 55 90 59 62
-189 37 60 61 63
-190 100 62 118 98
-191 100 26 62 41
-192 66 110 101 96
-193 112 69 50 95
-194 111 25 70 108
-195 33 55 73 119
-196 34 82 39 74
-197 88 36 102 76
-198 77 46 37 103
-199 78 112 38 104
-200 39 73 96 119
-201 56 40 52 107
-202 40 52 42 98
-203 99 47 59 43
-204 44 17 39 96
-205 33 100 47 83
-206 35 46 15 49
-207 57 114 18 51
-208 11 57 69 114
-209 88 12 70 32
-210 13 71 42 98
-211 45 14 48 84
-212 114 16 72 116
-213 67 60 94 20
-214 68 118 21 65
-215 24 93 116 64
-216 80 27 117 119
-217 56 107 32 54
-218 114 116 31 87
-219 66 34 113 117
-220 35 61 106 85
-221 111 36 115 54
-222 48 118 86 98
-223 79 59 105 62
-224 60 63 107 120
-225 79 112 69 105
-226 110 111 101 70
-227 77 113 103 73
-228 81 105 87 109
-229 106 117 85 119
-230 110 82 107 120
-231 67 94 97 109
-232 55 90 50 95
-233 89 100 47 81
-234 90 113 83 117
-235 111 115 87 109
-236 89 79 31 97
-237 68 92 65 120
-238 88 36 92 120
-239 112 38 93 116
-240 78 103 104 85
0

**************