C4graphGraph forms for C4 [ 240, 123 ] = SDD(UG(ATD[60,22]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 123 ] = SDD(UG(ATD[60,22])).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {113, 121}, {113, 123}, {113, 122}, {113, 125}, {109, 127}, {109, 122}, {102, 126}, {102, 124}, {96, 124}, {102, 121}, {93, 125}, {92, 127}, {83, 123}, {64, 126}, {8, 127}, {1, 121}, {3, 122}, {5, 124}, {7, 126}, {1, 123}, {1, 122}, {2, 121}, {6, 125}, {1, 125}, {2, 126}, {3, 127}, {2, 124}, {4, 123}, {80, 208}, {100, 228}, {3, 130}, {5, 132}, {7, 134}, {39, 166}, {86, 215}, {89, 216}, {18, 144}, {55, 181}, {69, 199}, {75, 201}, {82, 208}, {88, 218}, {106, 232}, {107, 233}, {2, 129}, {51, 176}, {50, 177}, {6, 133}, {20, 151}, {28, 159}, {71, 196}, {82, 209}, {87, 212}, {104, 235}, {3, 135}, {116, 240}, {63, 187}, {62, 186}, {47, 171}, {46, 170}, {44, 168}, {4, 128}, {8, 140}, {9, 141}, {10, 142}, {11, 143}, {26, 158}, {70, 194}, {81, 213}, {88, 220}, {98, 230}, {105, 237}, {106, 238}, {107, 239}, {37, 160}, {117, 240}, {61, 184}, {54, 179}, {52, 177}, {39, 162}, {69, 192}, {70, 195}, {98, 231}, {105, 236}, {30, 152}, {111, 233}, {31, 153}, {86, 208}, {87, 209}, {99, 229}, {4, 131}, {53, 178}, {38, 161}, {80, 215}, {25, 145}, {120, 240}, {58, 178}, {26, 146}, {27, 147}, {28, 148}, {104, 224}, {105, 225}, {9, 128}, {45, 164}, {11, 130}, {13, 132}, {15, 134}, {30, 151}, {38, 175}, {106, 227}, {39, 173}, {57, 179}, {73, 195}, {88, 210}, {89, 211}, {10, 129}, {60, 183}, {14, 133}, {29, 150}, {40, 163}, {73, 194}, {78, 197}, {84, 223}, {86, 221}, {90, 209}, {100, 239}, {4, 136}, {68, 200}, {65, 205}, {59, 183}, {5, 137}, {6, 138}, {7, 139}, {16, 156}, {17, 157}, {18, 158}, {19, 159}, {20, 152}, {43, 167}, {41, 164}, {80, 221}, {100, 233}, {56, 182}, {90, 212}, {91, 213}, {12, 131}, {65, 206}, {42, 165}, {103, 232}, {107, 228}, {71, 215}, {54, 167}, {37, 182}, {120, 235}, {40, 187}, {42, 185}, {5, 145}, {117, 225}, {6, 146}, {7, 147}, {12, 152}, {13, 153}, {14, 154}, {15, 155}, {36, 176}, {30, 139}, {60, 169}, {75, 222}, {120, 238}, {16, 135}, {120, 239}, {24, 143}, {91, 204}, {95, 200}, {56, 160}, {117, 237}, {67, 219}, {17, 136}, {117, 236}, {115, 234}, {19, 138}, {21, 140}, {23, 142}, {84, 205}, {94, 199}, {105, 240}, {15, 149}, {116, 238}, {80, 202}, {84, 206}, {85, 207}, {18, 137}, {116, 239}, {52, 175}, {22, 141}, {8, 148}, {63, 163}, {59, 167}, {49, 173}, {48, 172}, {9, 149}, {10, 150}, {11, 151}, {12, 144}, {35, 191}, {38, 186}, {43, 183}, {86, 202}, {32, 189}, {66, 223}, {53, 168}, {50, 175}, {44, 177}, {34, 191}, {41, 180}, {81, 204}, {42, 180}, {115, 237}, {65, 223}, {94, 192}, {20, 139}, {116, 235}, {51, 172}, {49, 174}, {33, 190}, {36, 187}, {75, 212}, {69, 229}, {26, 187}, {111, 206}, {110, 207}, {57, 155}, {68, 230}, {16, 179}, {60, 159}, {17, 178}, {25, 186}, {31, 188}, {71, 228}, {19, 183}, {67, 231}, {68, 224}, {69, 225}, {70, 226}, {101, 193}, {58, 159}, {67, 230}, {70, 227}, {106, 207}, {23, 176}, {97, 198}, {8, 160}, {66, 234}, {53, 157}, {9, 161}, {10, 162}, {11, 163}, {12, 164}, {13, 165}, {14, 166}, {39, 143}, {29, 180}, {26, 176}, {114, 216}, {54, 156}, {27, 177}, {73, 227}, {97, 203}, {103, 205}, {73, 226}, {57, 149}, {115, 223}, {21, 184}, {28, 178}, {119, 217}, {58, 148}, {45, 131}, {22, 185}, {66, 237}, {90, 234}, {104, 216}, {54, 135}, {118, 199}, {99, 210}, {89, 235}, {27, 168}, {111, 220}, {110, 221}, {24, 173}, {45, 152}, {87, 226}, {107, 222}, {25, 175}, {60, 138}, {36, 146}, {81, 231}, {85, 227}, {16, 167}, {110, 217}, {30, 169}, {38, 145}, {91, 236}, {97, 214}, {13, 181}, {114, 202}, {112, 200}, {14, 182}, {25, 161}, {90, 226}, {17, 168}, {29, 164}, {89, 224}, {95, 230}, {98, 219}, {99, 218}, {19, 169}, {24, 162}, {32, 154}, {33, 155}, {36, 158}, {100, 222}, {23, 172}, {85, 238}, {94, 229}, {104, 211}, {15, 179}, {119, 203}, {18, 174}, {91, 231}, {103, 219}, {20, 169}, {53, 136}, {51, 142}, {45, 144}, {22, 171}, {81, 236}, {85, 232}, {87, 234}, {88, 229}, {24, 166}, {34, 156}, {35, 157}, {21, 170}, {57, 134}, {44, 147}, {34, 157}, {35, 156}, {41, 150}, {94, 225}, {95, 224}, {99, 220}, {101, 218}, {79, 143}, {76, 141}, {110, 172}, {74, 142}, {111, 171}, {77, 137}, {46, 232}, {64, 134}, {47, 233}, {31, 216}, {92, 148}, {108, 165}, {112, 185}, {119, 189}, {64, 139}, {74, 129}, {76, 128}, {72, 133}, {79, 130}, {103, 170}, {114, 188}, {118, 184}, {115, 189}, {93, 146}, {83, 131}, {92, 140}, {21, 199}, {72, 154}, {64, 147}, {77, 158}, {83, 128}, {31, 202}, {93, 138}, {79, 151}, {93, 133}, {29, 196}, {76, 149}, {97, 184}, {108, 181}, {62, 228}, {83, 136}, {112, 171}, {101, 190}, {74, 150}, {118, 170}, {98, 190}, {28, 193}, {77, 144}, {22, 200}, {23, 201}, {27, 197}, {33, 193}, {50, 210}, {49, 209}, {95, 191}, {47, 206}, {50, 211}, {49, 208}, {34, 192}, {35, 192}, {55, 212}, {46, 205}, {77, 174}, {96, 132}, {52, 210}, {37, 194}, {52, 211}, {102, 129}, {74, 162}, {84, 188}, {108, 132}, {37, 204}, {63, 214}, {62, 215}, {55, 222}, {48, 217}, {44, 197}, {96, 137}, {109, 135}, {32, 203}, {114, 153}, {61, 214}, {40, 195}, {78, 165}, {79, 163}, {41, 196}, {119, 154}, {48, 221}, {43, 198}, {76, 161}, {59, 213}, {72, 166}, {42, 197}, {109, 130}, {96, 145}, {47, 220}, {56, 204}, {46, 219}, {108, 153}, {61, 203}, {78, 185}, {32, 217}, {51, 201}, {118, 140}, {62, 196}, {56, 194}, {78, 180}, {33, 218}, {68, 191}, {61, 198}, {58, 193}, {63, 195}, {82, 174}, {92, 160}, {59, 198}, {112, 141}, {67, 190}, {65, 188}, {71, 186}, {40, 214}, {55, 201}, {43, 213}, {72, 182}, {75, 181}, {101, 155}, {48, 207}, {66, 189}, {82, 173} }>;

(II) A more general form is to represent the graph as the orbit of {113, 121} under the group generated by the following permutations:

a: (4, 83)
b: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 18)(16, 26)(21, 32)(23, 34)(24, 28)(27, 29)(31, 47)(33, 49)(35, 51)(36, 54)(39, 58)(40, 43)(41, 44)(45, 64)(46, 66)(48, 69)(50, 62)(52, 71)(53, 74)(55, 68)(57, 77)(59, 63)(60, 79)(67, 87)(70, 81)(72, 92)(73, 91)(75, 95)(76, 96)(80, 88)(82, 101)(83, 102)(85, 105)(86, 99)(89, 100)(90, 98)(93, 109)(94, 110)(103, 115)(104, 107)(106, 117)(108, 112)(111, 114)(118, 119)(121, 123)(122, 125)(124, 128)(126, 131)(127, 133)(129, 136)(130, 138)(132, 141)(134, 144)(135, 146)(137, 149)(139, 152)(140, 154)(142, 157)(143, 159)(145, 161)(147, 164)(148, 166)(150, 168)(151, 169)(153, 171)(155, 174)(156, 176)(158, 179)(160, 182)(162, 178)(163, 183)(165, 185)(167, 187)(170, 189)(172, 192)(173, 193)(175, 186)(177, 196)(180, 197)(181, 200)(184, 203)(188, 206)(190, 209)(191, 201)(194, 204)(195, 213)(198, 214)(199, 217)(202, 220)(205, 223)(207, 225)(208, 218)(210, 215)(211, 228)(212, 230)(216, 233)(219, 234)(221, 229)(222, 224)(226, 231)(227, 236)(232, 237)(235, 239)(238, 240)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 25)(17, 27)(19, 29)(21, 31)(22, 33)(24, 26)(28, 42)(30, 45)(32, 48)(34, 50)(35, 52)(36, 39)(37, 55)(38, 54)(40, 49)(41, 60)(43, 62)(44, 53)(46, 65)(47, 67)(51, 72)(56, 75)(57, 76)(58, 78)(59, 71)(61, 80)(63, 82)(64, 83)(66, 85)(68, 88)(69, 89)(70, 87)(73, 90)(74, 93)(77, 79)(81, 100)(84, 103)(86, 97)(91, 107)(92, 108)(94, 104)(95, 99)(96, 109)(98, 111)(101, 112)(102, 113)(105, 116)(106, 115)(110, 119)(114, 118)(117, 120)(122, 124)(123, 126)(125, 129)(127, 132)(128, 134)(130, 137)(131, 139)(133, 142)(135, 145)(136, 147)(138, 150)(140, 153)(141, 155)(143, 158)(144, 151)(146, 162)(148, 165)(154, 172)(156, 175)(157, 177)(159, 180)(160, 181)(161, 179)(163, 174)(164, 169)(166, 176)(167, 186)(170, 188)(171, 190)(173, 187)(178, 197)(182, 201)(183, 196)(184, 202)(185, 193)(189, 207)(191, 210)(192, 211)(194, 212)(195, 209)(198, 215)(199, 216)(200, 218)(203, 221)(204, 222)(206, 219)(208, 214)(213, 228)(220, 230)(223, 232)(224, 229)(225, 235)(227, 234)(231, 233)(236, 239)(237, 238)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 26)(18, 28)(22, 32)(23, 34)(25, 37)(27, 40)(29, 43)(31, 46)(33, 49)(35, 51)(36, 53)(38, 56)(39, 57)(41, 59)(42, 61)(44, 63)(45, 60)(47, 66)(48, 68)(50, 70)(52, 73)(54, 74)(55, 69)(58, 77)(62, 81)(64, 79)(67, 80)(71, 91)(72, 76)(75, 94)(78, 97)(82, 101)(83, 93)(85, 89)(86, 98)(87, 88)(90, 99)(92, 96)(95, 110)(100, 105)(102, 109)(103, 114)(104, 106)(107, 117)(108, 118)(111, 115)(112, 119)(121, 122)(123, 125)(124, 127)(126, 130)(128, 133)(129, 135)(131, 138)(132, 140)(134, 143)(136, 146)(137, 148)(139, 151)(141, 154)(142, 156)(144, 159)(145, 160)(147, 163)(149, 166)(150, 167)(152, 169)(153, 170)(155, 173)(157, 176)(158, 178)(161, 182)(162, 179)(164, 183)(165, 184)(168, 187)(171, 189)(172, 191)(174, 193)(175, 194)(177, 195)(180, 198)(181, 199)(185, 203)(186, 204)(188, 205)(190, 208)(192, 201)(196, 213)(197, 214)(200, 217)(202, 219)(206, 223)(207, 224)(209, 218)(210, 226)(211, 227)(212, 229)(215, 231)(216, 232)(220, 234)(221, 230)(222, 225)(228, 236)(233, 237)(235, 238)(239, 240)
e: (62, 71)
f: (23, 51)
g: (43, 59)
h: (88, 99)
m: (47, 111)
n1: (50, 52)
a1: (116, 120)
b1: (28, 58)
c1: (32, 119)
d1: (69, 94)
e1: (46, 103)
f1: (12, 45)
g1: (3, 109)
h1: (89, 104)
m1: (19, 60)
n2: (40, 63)
a2: (33, 101)
b2: (25, 38)
c2: (49, 82)
d2: (10, 74)
e2: (27, 44)
f2: (16, 54)
g2: (8, 92)
h2: (13, 108)
m2: (7, 64)
n3: (70, 73)
a3: (11, 79)
b3: (34, 35)
c3: (22, 112)
d3: (18, 77)
e3: (9, 76)
f3: (26, 36)
g3: (15, 57)
h3: (66, 115)
m3: (6, 93)
n4: (21, 118)
a4: (48, 110)
b4: (67, 98)
c4: (29, 41)
d4: (5, 96)
e4: (31, 114)
f4: (2, 102)
g4: (14, 72)
h4: (81, 91)
m4: (100, 107)
n5: (80, 86)
a5: (20, 30)
b5: (17, 53)
c5: (65, 84)
d5: (105, 117)
e5: (24, 39)
f5: (42, 78)
g5: (37, 56)
h5: (85, 106)
m5: (68, 95)
n6: (61, 97)
a6: (55, 75)
b6: (87, 90)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 123 ]
240
-1 121 122 123 125
-2 121 124 126 129
-3 122 135 127 130
-4 123 136 128 131
-5 132 145 124 137
-6 133 146 125 138
-7 134 147 126 139
-8 148 127 160 140
-9 149 128 161 141
-10 150 129 162 142
-11 143 151 130 163
-12 144 152 131 164
-13 132 165 181 153
-14 154 133 166 182
-15 155 134 179 149
-16 156 167 135 179
-17 178 157 168 136
-18 144 158 137 174
-19 169 159 138 183
-20 169 139 151 152
-21 199 170 140 184
-22 200 171 141 185
-23 176 201 172 142
-24 143 166 162 173
-25 145 161 175 186
-26 176 187 146 158
-27 177 168 147 197
-28 178 148 159 193
-29 180 150 196 164
-30 169 139 151 152
-31 188 202 216 153
-32 154 189 203 217
-33 155 190 193 218
-34 156 157 191 192
-35 156 157 191 192
-36 176 187 146 158
-37 160 182 204 194
-38 145 161 175 186
-39 143 166 162 173
-40 187 214 195 163
-41 180 150 196 164
-42 165 180 185 197
-43 198 167 213 183
-44 177 168 147 197
-45 144 152 131 164
-46 232 170 205 219
-47 220 233 171 206
-48 221 172 217 207
-49 209 173 174 208
-50 177 210 211 175
-51 176 201 172 142
-52 177 210 211 175
-53 178 157 168 136
-54 156 167 135 179
-55 222 201 212 181
-56 160 182 204 194
-57 155 134 179 149
-58 178 148 159 193
-59 198 167 213 183
-60 169 159 138 183
-61 198 203 214 184
-62 215 228 196 186
-63 187 214 195 163
-64 134 147 126 139
-65 188 223 205 206
-66 189 223 234 237
-67 231 190 219 230
-68 200 191 224 230
-69 199 192 225 229
-70 226 194 227 195
-71 215 228 196 186
-72 154 133 166 182
-73 226 194 227 195
-74 150 129 162 142
-75 222 201 212 181
-76 149 128 161 141
-77 144 158 137 174
-78 165 180 185 197
-79 143 151 130 163
-80 221 202 215 208
-81 231 213 236 204
-82 209 173 174 208
-83 123 136 128 131
-84 188 223 205 206
-85 232 227 238 207
-86 221 202 215 208
-87 209 212 234 226
-88 220 210 218 229
-89 211 224 235 216
-90 209 212 234 226
-91 231 213 236 204
-92 148 127 160 140
-93 133 146 125 138
-94 199 192 225 229
-95 200 191 224 230
-96 132 145 124 137
-97 198 203 214 184
-98 231 190 219 230
-99 220 210 218 229
-100 222 233 228 239
-101 155 190 193 218
-102 121 124 126 129
-103 232 170 205 219
-104 211 224 235 216
-105 225 236 237 240
-106 232 227 238 207
-107 222 233 228 239
-108 132 165 181 153
-109 122 135 127 130
-110 221 172 217 207
-111 220 233 171 206
-112 200 171 141 185
-113 121 122 123 125
-114 188 202 216 153
-115 189 223 234 237
-116 235 238 239 240
-117 225 236 237 240
-118 199 170 140 184
-119 154 189 203 217
-120 235 238 239 240
-121 1 2 102 113
-122 1 3 113 109
-123 1 113 4 83
-124 2 102 5 96
-125 1 113 93 6
-126 2 102 7 64
-127 3 92 8 109
-128 4 83 9 76
-129 2 102 74 10
-130 11 79 3 109
-131 12 45 4 83
-132 13 5 96 108
-133 14 93 6 72
-134 57 15 7 64
-135 3 16 54 109
-136 4 17 83 53
-137 77 5 18 96
-138 60 93 6 19
-139 7 30 20 64
-140 92 8 118 21
-141 22 112 9 76
-142 23 51 74 10
-143 11 24 79 39
-144 77 12 45 18
-145 25 5 38 96
-146 36 26 93 6
-147 44 27 7 64
-148 58 92 28 8
-149 57 15 9 76
-150 29 41 74 10
-151 11 79 30 20
-152 12 45 30 20
-153 13 114 31 108
-154 14 72 119 32
-155 33 57 101 15
-156 34 35 16 54
-157 34 35 17 53
-158 77 36 26 18
-159 58 60 28 19
-160 56 37 92 8
-161 25 38 9 76
-162 24 39 74 10
-163 11 79 40 63
-164 12 45 29 41
-165 78 13 42 108
-166 24 14 39 72
-167 59 16 43 54
-168 44 27 17 53
-169 60 19 30 20
-170 46 103 118 21
-171 22 111 112 47
-172 110 23 48 51
-173 24 49 82 39
-174 77 49 82 18
-175 25 38 50 52
-176 23 36 26 51
-177 44 27 50 52
-178 58 17 28 53
-179 57 15 16 54
-180 78 29 41 42
-181 55 13 75 108
-182 56 14 37 72
-183 59 60 19 43
-184 61 118 97 21
-185 22 78 112 42
-186 25 38 71 62
-187 36 26 40 63
-188 114 84 31 65
-189 66 115 119 32
-190 33 67 101 98
-191 34 35 68 95
-192 34 35 69 94
-193 33 101 58 28
-194 56 37 70 73
-195 70 40 73 63
-196 71 29 62 41
-197 44 78 27 42
-198 59 61 97 43
-199 69 94 118 21
-200 22 68 112 95
-201 55 23 51 75
-202 80 114 31 86
-203 61 97 119 32
-204 56 91 37 81
-205 46 103 84 65
-206 111 47 84 65
-207 110 48 106 85
-208 80 49 82 86
-209 90 49 82 87
-210 88 99 50 52
-211 89 104 50 52
-212 55 90 75 87
-213 91 59 81 43
-214 61 40 63 97
-215 80 71 62 86
-216 89 114 104 31
-217 110 48 119 32
-218 33 88 99 101
-219 67 46 103 98
-220 88 99 111 47
-221 110 80 48 86
-222 55 100 107 75
-223 66 115 84 65
-224 89 68 104 95
-225 69 94 105 117
-226 90 70 73 87
-227 70 73 106 85
-228 100 71 62 107
-229 88 99 69 94
-230 67 68 95 98
-231 67 91 81 98
-232 46 103 106 85
-233 100 111 47 107
-234 66 90 115 87
-235 89 104 116 120
-236 91 81 105 117
-237 66 115 105 117
-238 116 106 85 120
-239 100 116 107 120
-240 105 116 117 120
0

**************