C4graphGraph forms for C4 [ 240, 124 ] = XI(Cmap(120,9){12,12|15}_20)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 124 ] = XI(Cmap(120,9){12,12|15}_20).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {106, 127}, {82, 123}, {82, 127}, {78, 124}, {79, 125}, {55, 123}, {49, 124}, {52, 122}, {55, 121}, {50, 125}, {43, 121}, {27, 122}, {27, 126}, {16, 126}, {8, 125}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {6, 127}, {1, 123}, {2, 121}, {5, 126}, {7, 124}, {1, 125}, {2, 126}, {3, 127}, {4, 122}, {2, 130}, {110, 238}, {65, 193}, {64, 192}, {63, 191}, {62, 190}, {3, 131}, {4, 132}, {93, 221}, {97, 225}, {6, 135}, {69, 196}, {67, 194}, {48, 177}, {32, 161}, {35, 162}, {37, 164}, {39, 166}, {41, 168}, {72, 201}, {74, 203}, {100, 229}, {109, 236}, {46, 172}, {57, 187}, {51, 177}, {50, 176}, {47, 173}, {106, 232}, {5, 134}, {70, 197}, {56, 187}, {19, 144}, {23, 148}, {26, 153}, {27, 152}, {38, 165}, {42, 169}, {45, 174}, {93, 222}, {96, 227}, {110, 237}, {1, 133}, {116, 240}, {14, 138}, {13, 136}, {15, 138}, {20, 145}, {22, 147}, {28, 153}, {72, 205}, {75, 206}, {89, 220}, {92, 217}, {97, 228}, {44, 170}, {64, 198}, {59, 189}, {58, 188}, {45, 171}, {91, 221}, {7, 128}, {70, 193}, {68, 195}, {59, 188}, {8, 143}, {14, 137}, {21, 146}, {36, 163}, {42, 173}, {107, 236}, {35, 171}, {98, 234}, {104, 224}, {5, 140}, {111, 230}, {7, 142}, {8, 129}, {83, 218}, {108, 229}, {32, 170}, {65, 203}, {38, 172}, {90, 208}, {105, 227}, {6, 141}, {12, 135}, {36, 175}, {71, 204}, {87, 220}, {29, 145}, {60, 176}, {30, 146}, {34, 174}, {94, 210}, {95, 211}, {109, 225}, {110, 226}, {9, 132}, {70, 203}, {11, 134}, {13, 128}, {15, 130}, {24, 149}, {26, 151}, {86, 219}, {15, 129}, {99, 237}, {4, 139}, {71, 200}, {69, 202}, {64, 207}, {10, 133}, {14, 129}, {25, 150}, {40, 167}, {84, 219}, {85, 218}, {24, 136}, {25, 137}, {26, 138}, {36, 180}, {79, 223}, {29, 140}, {116, 229}, {53, 164}, {80, 193}, {97, 240}, {57, 171}, {67, 209}, {3, 144}, {117, 230}, {63, 172}, {54, 165}, {8, 155}, {12, 159}, {16, 131}, {30, 141}, {9, 156}, {114, 231}, {67, 214}, {61, 168}, {58, 175}, {11, 158}, {23, 130}, {16, 134}, {28, 138}, {10, 157}, {120, 239}, {28, 139}, {38, 177}, {88, 207}, {9, 145}, {120, 224}, {53, 173}, {10, 146}, {11, 147}, {12, 148}, {90, 194}, {29, 132}, {112, 233}, {87, 206}, {39, 189}, {113, 235}, {80, 202}, {81, 203}, {94, 196}, {95, 197}, {15, 148}, {119, 236}, {117, 238}, {115, 232}, {68, 223}, {60, 167}, {30, 133}, {77, 209}, {92, 192}, {7, 154}, {18, 143}, {76, 209}, {85, 200}, {109, 240}, {48, 174}, {113, 239}, {56, 166}, {49, 175}, {17, 142}, {73, 214}, {86, 201}, {33, 129}, {67, 227}, {42, 139}, {117, 212}, {82, 240}, {16, 179}, {118, 213}, {114, 209}, {65, 226}, {20, 183}, {24, 187}, {99, 192}, {107, 200}, {34, 134}, {6, 163}, {113, 212}, {17, 180}, {19, 182}, {25, 188}, {72, 237}, {74, 239}, {108, 201}, {48, 150}, {57, 159}, {5, 162}, {56, 159}, {18, 181}, {26, 189}, {56, 144}, {43, 130}, {55, 158}, {53, 156}, {51, 154}, {48, 153}, {75, 226}, {51, 153}, {54, 157}, {115, 216}, {68, 239}, {27, 183}, {98, 206}, {99, 207}, {13, 160}, {60, 145}, {21, 184}, {23, 186}, {71, 234}, {33, 143}, {105, 199}, {14, 161}, {120, 215}, {112, 223}, {68, 235}, {65, 238}, {61, 146}, {52, 155}, {22, 185}, {98, 205}, {39, 151}, {114, 194}, {34, 147}, {119, 198}, {89, 235}, {20, 167}, {116, 199}, {112, 195}, {47, 156}, {99, 208}, {107, 216}, {102, 210}, {103, 211}, {10, 191}, {111, 218}, {49, 132}, {17, 164}, {19, 166}, {28, 169}, {87, 226}, {91, 238}, {92, 233}, {108, 217}, {109, 216}, {9, 190}, {50, 133}, {47, 152}, {18, 165}, {101, 221}, {31, 166}, {54, 143}, {44, 149}, {46, 151}, {91, 225}, {45, 150}, {53, 142}, {86, 237}, {87, 235}, {93, 225}, {11, 182}, {21, 168}, {91, 230}, {100, 217}, {104, 213}, {90, 228}, {93, 227}, {96, 222}, {110, 208}, {13, 178}, {52, 139}, {22, 169}, {31, 160}, {85, 234}, {88, 231}, {96, 223}, {105, 214}, {18, 210}, {119, 183}, {40, 232}, {41, 233}, {66, 128}, {23, 212}, {92, 159}, {88, 156}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {22, 211}, {115, 182}, {111, 170}, {37, 224}, {75, 142}, {33, 231}, {47, 233}, {46, 232}, {35, 229}, {120, 176}, {29, 212}, {78, 135}, {24, 210}, {25, 211}, {30, 213}, {113, 186}, {44, 231}, {75, 128}, {12, 192}, {116, 184}, {17, 221}, {32, 236}, {118, 187}, {43, 228}, {76, 131}, {89, 150}, {55, 230}, {66, 147}, {101, 180}, {54, 228}, {20, 199}, {96, 179}, {102, 181}, {108, 191}, {73, 157}, {78, 154}, {79, 155}, {98, 182}, {107, 190}, {94, 136}, {95, 137}, {61, 234}, {78, 148}, {104, 179}, {31, 195}, {76, 144}, {19, 206}, {70, 155}, {31, 193}, {62, 224}, {103, 185}, {105, 183}, {21, 202}, {69, 154}, {57, 219}, {63, 220}, {118, 149}, {35, 199}, {58, 222}, {39, 195}, {80, 180}, {81, 181}, {59, 222}, {72, 173}, {89, 188}, {32, 198}, {49, 215}, {88, 190}, {37, 194}, {114, 149}, {42, 205}, {73, 174}, {77, 165}, {112, 152}, {38, 204}, {82, 184}, {83, 185}, {102, 140}, {103, 141}, {62, 213}, {71, 172}, {66, 169}, {104, 131}, {40, 196}, {41, 197}, {85, 185}, {86, 186}, {100, 136}, {101, 137}, {58, 215}, {115, 158}, {106, 135}, {33, 207}, {36, 202}, {84, 186}, {119, 152}, {40, 216}, {66, 178}, {61, 205}, {60, 204}, {41, 217}, {80, 160}, {81, 161}, {52, 197}, {111, 158}, {83, 162}, {37, 215}, {46, 220}, {34, 214}, {44, 218}, {63, 201}, {62, 200}, {45, 219}, {73, 191}, {51, 196}, {84, 163}, {95, 168}, {83, 171}, {94, 167}, {117, 140}, {74, 176}, {43, 208}, {118, 141}, {81, 170}, {84, 175}, {77, 177}, {79, 179}, {97, 157}, {59, 198}, {69, 184}, {64, 189}, {106, 151}, {50, 204}, {76, 178}, {90, 164}, {74, 181}, {77, 178} }>;

(II) A more general form is to represent the graph as the orbit of {106, 127} under the group generated by the following permutations:

a: (1, 2, 55, 43)(3, 23, 82, 15)(4, 115, 99, 30)(5, 91, 54, 79)(6, 78, 106, 12)(7, 46, 92, 103)(8, 16, 117, 97)(9, 107, 88, 62)(10, 52, 11, 110)(13, 89, 100, 25)(14, 76, 113, 116)(17, 38, 112, 83)(18, 96, 102, 93)(19, 86, 21, 28)(20, 32, 114, 120)(22, 75, 63, 41)(24, 58, 94, 59)(26, 56, 84, 69)(27, 111, 90, 50)(29, 109, 33, 104)(31, 45, 80, 48)(34, 65, 73, 70)(35, 101, 77, 68)(36, 51, 39, 57)(37, 60, 119, 44)(40, 64, 118, 49)(42, 98, 72, 61)(47, 85, 53, 71)(66, 87, 108, 95)(67, 74, 105, 81)(122, 158, 208, 133)(123, 130)(124, 232, 192, 141)(125, 126, 230, 228)(127, 148)(128, 220, 217, 211)(129, 131, 212, 240)(132, 216, 207, 213)(134, 238, 157, 155)(136, 188)(137, 178, 235, 229)(138, 144, 186, 184)(139, 182, 237, 146)(140, 225, 143, 179)(142, 172, 233, 185)(145, 236, 231, 224)(147, 226, 191, 197)(149, 215, 167, 198)(150, 160)(151, 159, 163, 154)(152, 218, 164, 204)(153, 166, 219, 202)(156, 200)(161, 209, 239, 199)(162, 221, 165, 223)(168, 169, 206, 201)(170, 194, 176, 183)(171, 180, 177, 195)(173, 234)(174, 193)(175, 196, 189, 187)(181, 227)(203, 214)(210, 222)
b: (2, 8)(3, 10)(4, 14)(5, 18)(6, 21)(7, 25)(9, 32)(11, 38)(12, 41)(13, 45)(15, 52)(16, 54)(17, 58)(19, 63)(20, 44)(22, 51)(23, 70)(24, 35)(26, 42)(27, 33)(29, 81)(30, 82)(31, 86)(34, 77)(37, 93)(39, 72)(40, 85)(43, 79)(46, 98)(47, 64)(48, 66)(49, 101)(50, 55)(53, 59)(56, 108)(57, 100)(60, 111)(61, 106)(62, 109)(65, 113)(68, 110)(69, 103)(71, 115)(73, 76)(74, 117)(75, 89)(78, 95)(80, 84)(83, 94)(88, 119)(90, 96)(91, 120)(97, 104)(99, 112)(105, 114)(116, 118)(121, 125)(122, 129)(123, 133)(124, 137)(126, 143)(127, 146)(128, 150)(130, 155)(131, 157)(132, 161)(134, 165)(135, 168)(136, 171)(138, 139)(140, 181)(141, 184)(142, 188)(144, 191)(145, 170)(147, 177)(148, 197)(149, 199)(151, 205)(152, 207)(153, 169)(154, 211)(156, 198)(158, 204)(159, 217)(160, 219)(162, 210)(163, 202)(164, 222)(166, 201)(167, 218)(172, 182)(173, 189)(174, 178)(175, 180)(176, 230)(179, 228)(183, 231)(185, 196)(186, 193)(187, 229)(190, 236)(192, 233)(194, 227)(195, 237)(200, 216)(203, 212)(206, 220)(208, 223)(209, 214)(213, 240)(215, 221)(224, 225)(226, 235)(232, 234)(238, 239)
c: (2, 82)(3, 43)(4, 69)(5, 109)(6, 15)(8, 30)(9, 94)(10, 79)(11, 91)(13, 53)(14, 103)(16, 97)(17, 66)(18, 62)(19, 110)(21, 52)(22, 101)(23, 106)(24, 88)(26, 84)(27, 116)(28, 36)(29, 40)(31, 72)(32, 83)(33, 118)(34, 93)(35, 119)(37, 77)(38, 120)(39, 86)(42, 80)(45, 59)(46, 113)(47, 100)(48, 58)(49, 51)(54, 104)(56, 99)(57, 64)(61, 70)(63, 68)(65, 98)(71, 74)(73, 96)(76, 90)(81, 85)(102, 107)(108, 112)(115, 117)(121, 123)(122, 184)(124, 154)(125, 133)(126, 240)(127, 130)(128, 142)(129, 141)(131, 228)(132, 196)(134, 225)(135, 148)(136, 156)(137, 211)(138, 163)(139, 202)(140, 216)(143, 213)(144, 208)(145, 167)(146, 155)(147, 221)(149, 231)(150, 188)(151, 186)(152, 229)(153, 175)(157, 179)(158, 230)(159, 192)(160, 173)(161, 185)(162, 236)(164, 178)(165, 224)(166, 237)(168, 197)(169, 180)(170, 218)(171, 198)(172, 239)(174, 222)(176, 204)(177, 215)(181, 200)(182, 238)(183, 199)(187, 207)(189, 219)(190, 210)(191, 223)(193, 205)(194, 209)(195, 201)(203, 234)(206, 226)(212, 232)(214, 227)(217, 233)(220, 235)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 124 ]
240
-1 121 133 123 125
-2 121 122 126 130
-3 144 123 127 131
-4 132 122 124 139
-5 134 126 140 162
-6 135 127 141 163
-7 154 124 128 142
-8 143 155 125 129
-9 132 145 156 190
-10 133 146 157 191
-11 134 147 158 182
-12 135 148 159 192
-13 178 136 160 128
-14 137 138 161 129
-15 148 138 129 130
-16 134 179 126 131
-17 221 180 142 164
-18 143 165 210 181
-19 144 166 182 206
-20 199 145 167 183
-21 146 168 202 184
-22 211 147 169 185
-23 212 148 130 186
-24 187 210 136 149
-25 188 211 137 150
-26 189 138 151 153
-27 122 126 183 152
-28 169 138 139 153
-29 132 145 212 140
-30 133 146 213 141
-31 166 160 193 195
-32 198 170 236 161
-33 143 231 129 207
-34 134 147 214 174
-35 199 171 162 229
-36 180 202 163 175
-37 224 215 194 164
-38 165 177 204 172
-39 166 189 151 195
-40 232 167 216 196
-41 233 168 217 197
-42 169 139 205 173
-43 121 228 130 208
-44 231 170 149 218
-45 171 150 174 219
-46 220 232 172 151
-47 156 233 173 152
-48 177 150 174 153
-49 132 124 215 175
-50 176 133 125 204
-51 154 177 196 153
-52 122 155 139 197
-53 156 173 142 164
-54 143 165 157 228
-55 121 123 158 230
-56 187 144 166 159
-57 187 159 171 219
-58 188 222 215 175
-59 198 188 189 222
-60 176 145 167 204
-61 146 168 234 205
-62 200 190 213 224
-63 220 201 191 172
-64 198 189 192 207
-65 203 193 226 238
-66 178 147 169 128
-67 209 214 194 227
-68 223 235 195 239
-69 154 202 184 196
-70 155 203 193 197
-71 200 234 204 172
-72 201 237 205 173
-73 157 191 214 174
-74 176 181 203 239
-75 226 128 206 142
-76 209 144 178 131
-77 165 209 177 178
-78 154 124 135 148
-79 155 179 223 125
-80 180 202 160 193
-81 170 181 203 161
-82 123 127 184 240
-83 171 162 185 218
-84 163 175 186 219
-85 200 234 185 218
-86 201 237 186 219
-87 220 235 226 206
-88 231 156 190 207
-89 220 188 235 150
-90 194 228 164 208
-91 221 225 238 230
-92 233 159 192 217
-93 221 222 225 227
-94 210 167 136 196
-95 211 168 137 197
-96 222 179 223 227
-97 157 225 228 240
-98 234 182 205 206
-99 192 237 207 208
-100 136 160 217 229
-101 221 180 137 161
-102 210 181 140 162
-103 211 141 163 185
-104 179 213 224 131
-105 199 214 183 227
-106 232 135 127 151
-107 200 190 236 216
-108 201 191 217 229
-109 225 236 216 240
-110 226 237 238 208
-111 158 170 218 230
-112 233 223 195 152
-113 212 235 239 186
-114 209 231 149 194
-115 232 158 182 216
-116 199 184 229 240
-117 212 238 140 230
-118 187 213 149 141
-119 198 236 183 152
-120 176 224 215 239
-121 55 1 2 43
-122 2 4 27 52
-123 55 1 3 82
-124 78 4 49 7
-125 1 79 50 8
-126 2 5 16 27
-127 3 82 6 106
-128 66 13 7 75
-129 33 14 15 8
-130 23 2 15 43
-131 3 16 104 76
-132 4 49 29 9
-133 1 50 30 10
-134 11 34 5 16
-135 12 78 6 106
-136 100 13 24 94
-137 101 14 25 95
-138 14 15 26 28
-139 4 28 52 42
-140 102 5 29 117
-141 103 6 30 118
-142 17 7 53 75
-143 33 18 8 54
-144 56 3 19 76
-145 60 29 9 20
-146 61 30 10 21
-147 11 22 66 34
-148 12 23 78 15
-149 44 24 114 118
-150 45 89 25 48
-151 46 26 39 106
-152 112 47 27 119
-153 26 48 28 51
-154 78 69 7 51
-155 79 70 8 52
-156 88 47 9 53
-157 73 97 10 54
-158 11 55 111 115
-159 12 56 57 92
-160 100 13 80 31
-161 101 14 81 32
-162 35 102 5 83
-163 36 103 6 84
-164 90 37 17 53
-165 77 38 18 54
-166 56 39 19 31
-167 60 94 40 20
-168 61 95 41 21
-169 22 66 28 42
-170 44 111 81 32
-171 45 35 57 83
-172 46 38 71 63
-173 47 72 42 53
-174 34 45 48 73
-175 36 58 49 84
-176 60 50 74 120
-177 77 48 38 51
-178 66 77 13 76
-179 79 16 104 96
-180 101 36 80 17
-181 102 81 18 74
-182 11 115 19 98
-183 27 105 20 119
-184 69 82 116 21
-185 22 103 83 85
-186 23 113 84 86
-187 56 24 57 118
-188 89 25 58 59
-189 26 59 39 64
-190 88 62 107 9
-191 73 63 108 10
-192 99 12 92 64
-193 80 70 31 65
-194 67 90 37 114
-195 68 112 39 31
-196 69 94 40 51
-197 70 95 41 52
-198 59 64 119 32
-199 35 105 116 20
-200 71 62 85 107
-201 72 63 86 108
-202 36 69 80 21
-203 70 81 74 65
-204 38 60 71 50
-205 61 72 42 98
-206 19 75 87 98
-207 33 88 99 64
-208 99 110 90 43
-209 77 67 114 76
-210 24 102 94 18
-211 22 25 103 95
-212 23 113 29 117
-213 104 62 30 118
-214 34 67 105 73
-215 58 37 49 120
-216 115 40 107 109
-217 100 92 41 108
-218 44 111 83 85
-219 45 57 84 86
-220 89 46 63 87
-221 101 91 93 17
-222 58 59 93 96
-223 68 79 112 96
-224 37 104 62 120
-225 91 93 97 109
-226 110 75 65 87
-227 67 93 105 96
-228 90 97 43 54
-229 100 35 116 108
-230 55 111 91 117
-231 33 44 88 114
-232 46 115 40 106
-233 112 47 92 41
-234 71 61 85 98
-235 89 68 113 87
-236 107 119 32 109
-237 99 110 72 86
-238 110 91 117 65
-239 68 113 74 120
-240 82 116 97 109
0

**************