[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 125 ] =
PL(CSI(W(6,2)[6^4],5)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {57, 121}, {56, 121}, {56, 126}, {57, 126}, {53, 127}, {52, 127},
{46, 126}, {47, 126}, {47, 125}, {46, 125}, {36, 124}, {37, 125}, {36, 125},
{37, 124}, {27, 123}, {26, 123}, {26, 124}, {27, 124}, {16, 122}, {17, 123},
{16, 123}, {17, 122}, {3, 127}, {6, 122}, {2, 127}, {7, 122}, {7, 121}, {6,
121}, {21, 148}, {22, 151}, {28, 157}, {81, 208}, {82, 211}, {88, 217}, {2,
128}, {76, 206}, {14, 140}, {15, 141}, {21, 151}, {28, 158}, {81, 211}, {3,
128}, {76, 207}, {14, 141}, {15, 140}, {91, 216}, {55, 179}, {75, 207}, {92,
216}, {27, 158}, {75, 206}, {55, 178}, {20, 146}, {21, 147}, {27, 157}, {79,
201}, {88, 222}, {20, 147}, {79, 200}, {4, 140}, {74, 194}, {5, 140}, {74, 195},
{81, 216}, {87, 222}, {99, 234}, {30, 148}, {73, 195}, {56, 178}, {31, 149},
{82, 216}, {90, 208}, {99, 233}, {31, 148}, {73, 194}, {56, 179}, {84, 223},
{92, 215}, {9, 133}, {61, 177}, {12, 128}, {13, 129}, {83, 223}, {91, 215}, {8,
133}, {12, 129}, {13, 128}, {21, 152}, {30, 147}, {100, 233}, {5, 139}, {8,
134}, {22, 152}, {87, 217}, {100, 234}, {4, 139}, {61, 178}, {9, 134}, {96,
239}, {1, 145}, {120, 232}, {119, 231}, {114, 226}, {60, 172}, {54, 166}, {96,
240}, {113, 225}, {54, 167}, {60, 173}, {53, 167}, {1, 146}, {114, 225}, {53,
166}, {113, 226}, {18, 134}, {19, 135}, {22, 130}, {25, 141}, {28, 136}, {18,
135}, {19, 134}, {23, 130}, {24, 141}, {29, 136}, {90, 207}, {23, 129}, {59,
173}, {24, 142}, {22, 129}, {59, 172}, {25, 142}, {10, 146}, {67, 219}, {57,
161}, {11, 147}, {32, 184}, {38, 190}, {80, 200}, {11, 146}, {116, 237}, {67,
218}, {57, 160}, {32, 185}, {38, 191}, {80, 201}, {29, 135}, {116, 238}, {58,
160}, {37, 191}, {89, 195}, {10, 145}, {58, 161}, {28, 135}, {37, 190}, {88,
195}, {85, 201}, {88, 196}, {84, 201}, {115, 238}, {89, 196}, {62, 160}, {115,
237}, {68, 218}, {81, 207}, {84, 202}, {63, 160}, {120, 231}, {119, 232}, {68,
219}, {85, 202}, {63, 159}, {70, 230}, {64, 224}, {62, 159}, {70, 231}, {64,
225}, {103, 198}, {109, 204}, {32, 130}, {69, 231}, {33, 131}, {45, 143}, {51,
145}, {103, 197}, {110, 204}, {111, 205}, {32, 131}, {69, 230}, {33, 130}, {44,
143}, {50, 150}, {51, 150}, {85, 240}, {110, 203}, {112, 213}, {31, 185}, {54,
144}, {86, 240}, {109, 203}, {112, 214}, {31, 184}, {55, 144}, {50, 149}, {43,
131}, {51, 155}, {25, 176}, {117, 220}, {51, 154}, {42, 131}, {26, 176}, {120,
210}, {118, 220}, {60, 150}, {107, 192}, {34, 142}, {65, 237}, {35, 143}, {108,
192}, {34, 143}, {118, 219}, {65, 236}, {60, 145}, {35, 142}, {104, 197}, {38,
136}, {117, 219}, {66, 236}, {52, 154}, {39, 137}, {42, 132}, {104, 198}, {38,
137}, {66, 237}, {52, 155}, {39, 136}, {43, 132}, {95, 240}, {52, 132}, {118,
198}, {58, 138}, {84, 228}, {90, 234}, {95, 239}, {112, 192}, {53, 132}, {119,
198}, {59, 138}, {113, 192}, {8, 187}, {23, 164}, {89, 234}, {1, 181}, {115,
199}, {2, 182}, {8, 188}, {23, 163}, {29, 169}, {30, 170}, {26, 175}, {120,
205}, {114, 199}, {25, 175}, {119, 193}, {1, 182}, {118, 193}, {2, 181}, {29,
170}, {30, 169}, {83, 228}, {49, 137}, {105, 209}, {106, 210}, {48, 137}, {93,
228}, {111, 214}, {48, 138}, {94, 228}, {111, 213}, {7, 188}, {24, 163}, {49,
138}, {105, 210}, {106, 209}, {7, 187}, {55, 139}, {24, 164}, {40, 148}, {41,
149}, {44, 144}, {89, 229}, {97, 221}, {98, 222}, {40, 149}, {54, 139}, {45,
144}, {86, 235}, {94, 227}, {111, 210}, {59, 133}, {114, 204}, {85, 235}, {93,
227}, {41, 150}, {115, 204}, {58, 133}, {90, 229}, {97, 222}, {98, 221}, {46,
238}, {117, 181}, {93, 157}, {99, 163}, {3, 194}, {116, 181}, {9, 200}, {46,
239}, {92, 157}, {98, 163}, {3, 193}, {10, 200}, {45, 239}, {45, 238}, {102,
162}, {105, 173}, {108, 168}, {4, 193}, {103, 162}, {104, 173}, {109, 168}, {4,
194}, {103, 161}, {104, 174}, {102, 161}, {105, 174}, {5, 205}, {6, 206}, {17,
217}, {18, 218}, {43, 227}, {43, 226}, {98, 168}, {109, 167}, {113, 187}, {5,
206}, {6, 205}, {17, 218}, {18, 217}, {99, 168}, {100, 175}, {108, 167}, {112,
187}, {10, 199}, {9, 199}, {116, 186}, {44, 226}, {44, 227}, {117, 186}, {100,
180}, {14, 223}, {101, 180}, {13, 223}, {108, 191}, {76, 152}, {77, 153}, {107,
191}, {76, 153}, {77, 152}, {72, 158}, {73, 159}, {101, 179}, {72, 159}, {73,
158}, {11, 211}, {66, 154}, {12, 212}, {49, 233}, {49, 232}, {67, 154}, {50,
232}, {67, 153}, {110, 180}, {50, 233}, {66, 153}, {101, 185}, {102, 186}, {110,
179}, {63, 225}, {11, 212}, {63, 224}, {12, 211}, {101, 186}, {102, 185}, {69,
165}, {75, 171}, {74, 170}, {80, 176}, {87, 183}, {68, 165}, {75, 170}, {74,
171}, {80, 177}, {86, 183}, {40, 202}, {68, 166}, {15, 236}, {69, 166}, {40,
203}, {15, 235}, {33, 197}, {33, 196}, {34, 196}, {34, 197}, {61, 213}, {61,
212}, {62, 212}, {65, 171}, {78, 164}, {79, 165}, {62, 213}, {64, 171}, {78,
165}, {79, 164}, {39, 203}, {64, 172}, {48, 220}, {82, 190}, {13, 224}, {65,
172}, {39, 202}, {48, 221}, {83, 190}, {14, 224}, {83, 189}, {86, 184}, {82,
189}, {87, 184}, {91, 180}, {71, 183}, {77, 189}, {94, 174}, {107, 155}, {20,
229}, {77, 188}, {71, 182}, {95, 174}, {106, 155}, {20, 230}, {35, 209}, {47,
221}, {78, 188}, {35, 208}, {47, 220}, {78, 189}, {36, 208}, {70, 178}, {91,
175}, {19, 230}, {36, 209}, {19, 229}, {71, 177}, {95, 169}, {97, 151}, {106,
156}, {70, 177}, {71, 176}, {94, 169}, {96, 151}, {107, 156}, {16, 235}, {16,
236}, {42, 214}, {96, 156}, {42, 215}, {97, 156}, {41, 215}, {72, 182}, {92,
162}, {41, 214}, {72, 183}, {93, 162} }>;
(II) A more general form is to represent the graph as the orbit of {57, 121}
under the group generated by the following permutations:
a: (2, 10)(3, 9)(4, 8)(5, 7)(11, 71)(12, 80)(13, 79)(14, 78)(15, 77)(16, 76)(17,
75)(18, 74)(19, 73)(20, 72)(21, 86)(22, 85)(23, 84)(24, 83)(25, 82)(26, 81)(27,
90)(28, 89)(29, 88)(30, 87)(32, 40)(33, 39)(34, 38)(35, 37)(41, 101)(42,
110)(43, 109)(44, 108)(45, 107)(46, 106)(47, 105)(48, 104)(49, 103)(50, 102)(51,
116)(52, 115)(53, 114)(54, 113)(55, 112)(56, 111)(57, 120)(58, 119)(59, 118)(60,
117)(62, 70)(63, 69)(64, 68)(65, 67)(92, 100)(93, 99)(94, 98)(95, 97)(121,
205)(122, 206)(123, 207)(124, 208)(125, 209)(126, 210)(127, 199)(128, 200)(129,
201)(130, 202)(131, 203)(132, 204)(133, 193)(134, 194)(135, 195)(136, 196)(137,
197)(138, 198)(139, 187)(140, 188)(141, 189)(142, 190)(143, 191)(144, 192)(145,
181)(146, 182)(147, 183)(148, 184)(149, 185)(150, 186)(151, 240)(152, 235)(153,
236)(154, 237)(155, 238)(156, 239)(157, 234)(158, 229)(159, 230)(160, 231)(161,
232)(162, 233)(163, 228)(164, 223)(165, 224)(166, 225)(167, 226)(168, 227)(169,
222)(170, 217)(171, 218)(172, 219)(173, 220)(174, 221)(175, 216)(176, 211)(177,
212)(178, 213)(179, 214)(180, 215) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 11, 21, 31, 41, 51)(2, 12, 22, 32, 42, 52)(3, 13, 23, 33, 43, 53)(4, 14,
24, 34, 44, 54)(5, 15, 25, 35, 45, 55)(6, 16, 26, 36, 46, 56)(7, 17, 27, 37, 47,
57)(8, 18, 28, 38, 48, 58)(9, 19, 29, 39, 49, 59)(10, 20, 30, 40, 50, 60)(61,
76, 86, 91, 106, 116)(62, 77, 87, 92, 107, 117)(63, 78, 88, 93, 108, 118)(64,
79, 89, 94, 109, 119)(65, 80, 90, 95, 110, 120)(66, 71, 81, 96, 101, 111)(67,
72, 82, 97, 102, 112)(68, 73, 83, 98, 103, 113)(69, 74, 84, 99, 104, 114)(70,
75, 85, 100, 105, 115)(121, 122, 123, 124, 125, 126)(127, 128, 129, 130, 131,
132)(133, 134, 135, 136, 137, 138)(139, 140, 141, 142, 143, 144)(145, 146, 147,
148, 149, 150)(151, 185, 214, 154, 182, 211)(152, 184, 215, 155, 181, 212)(153,
183, 216, 156, 186, 213)(157, 191, 220, 160, 188, 217)(158, 190, 221, 161, 187,
218)(159, 189, 222, 162, 192, 219)(163, 197, 226, 166, 194, 223)(164, 196, 227,
167, 193, 224)(165, 195, 228, 168, 198, 225)(169, 203, 232, 172, 200, 229)(170,
202, 233, 173, 199, 230)(171, 201, 234, 174, 204, 231)(175, 209, 238, 178, 206,
235)(176, 208, 239, 179, 205, 236)(177, 207, 240, 180, 210, 237)
c: (11, 51)(12, 52)(13, 53)(14, 54)(15, 55)(16, 56)(17, 57)(18, 58)(19, 59)(20,
60)(21, 41)(22, 42)(23, 43)(24, 44)(25, 45)(26, 46)(27, 47)(28, 48)(29, 49)(30,
50)(61, 66)(62, 67)(63, 68)(64, 69)(65, 70)(71, 116)(72, 117)(73, 118)(74,
119)(75, 120)(76, 111)(77, 112)(78, 113)(79, 114)(80, 115)(81, 106)(82, 107)(83,
108)(84, 109)(85, 110)(86, 101)(87, 102)(88, 103)(89, 104)(90, 105)(91, 96)(92,
97)(93, 98)(94, 99)(95, 100)(121, 122)(123, 126)(124, 125)(127, 128)(129,
132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145,
146)(147, 150)(148, 149)(151, 215)(152, 214)(153, 213)(154, 212)(155, 211)(156,
216)(157, 221)(158, 220)(159, 219)(160, 218)(161, 217)(162, 222)(163, 227)(164,
226)(165, 225)(166, 224)(167, 223)(168, 228)(169, 233)(170, 232)(171, 231)(172,
230)(173, 229)(174, 234)(175, 239)(176, 238)(177, 237)(178, 236)(179, 235)(180,
240)(181, 182)(183, 186)(184, 185)(187, 188)(189, 192)(190, 191)(193, 194)(195,
198)(196, 197)(199, 200)(201, 204)(202, 203)(205, 206)(207, 210)(208, 209)
d: (1, 2)(3, 10)(4, 9)(5, 8)(6, 7)(11, 12)(13, 20)(14, 19)(15, 18)(16, 17)(21,
22)(23, 30)(24, 29)(25, 28)(26, 27)(31, 32)(33, 40)(34, 39)(35, 38)(36, 37)(41,
42)(43, 50)(44, 49)(45, 48)(46, 47)(51, 52)(53, 60)(54, 59)(55, 58)(56, 57)(61,
62)(63, 70)(64, 69)(65, 68)(66, 67)(71, 72)(73, 80)(74, 79)(75, 78)(76, 77)(81,
82)(83, 90)(84, 89)(85, 88)(86, 87)(91, 92)(93, 100)(94, 99)(95, 98)(96,
97)(101, 102)(103, 110)(104, 109)(105, 108)(106, 107)(111, 112)(113, 120)(114,
119)(115, 118)(116, 117)(127, 145)(128, 146)(129, 147)(130, 148)(131, 149)(132,
150)(133, 139)(134, 140)(135, 141)(136, 142)(137, 143)(138, 144)(157, 175)(158,
176)(159, 177)(160, 178)(161, 179)(162, 180)(163, 169)(164, 170)(165, 171)(166,
172)(167, 173)(168, 174)(187, 205)(188, 206)(189, 207)(190, 208)(191, 209)(192,
210)(193, 199)(194, 200)(195, 201)(196, 202)(197, 203)(198, 204)(217, 235)(218,
236)(219, 237)(220, 238)(221, 239)(222, 240)(223, 229)(224, 230)(225, 231)(226,
232)(227, 233)(228, 234)
C4[ 240, 125 ]
240
-1 145 146 181 182
-2 181 127 182 128
-3 127 193 128 194
-4 193 139 194 140
-5 139 205 140 206
-6 121 122 205 206
-7 121 187 122 188
-8 187 133 188 134
-9 133 199 134 200
-10 199 145 200 146
-11 211 146 212 147
-12 211 212 128 129
-13 223 224 128 129
-14 223 224 140 141
-15 235 236 140 141
-16 122 123 235 236
-17 122 123 217 218
-18 134 135 217 218
-19 134 135 229 230
-20 146 147 229 230
-21 147 148 151 152
-22 129 151 130 152
-23 129 130 163 164
-24 141 163 142 164
-25 176 141 142 175
-26 176 123 124 175
-27 123 124 157 158
-28 135 157 136 158
-29 135 136 169 170
-30 147 169 148 170
-31 148 149 184 185
-32 184 130 185 131
-33 130 196 131 197
-34 143 196 142 197
-35 143 209 142 208
-36 209 124 125 208
-37 124 190 125 191
-38 190 136 191 137
-39 136 202 137 203
-40 202 148 203 149
-41 214 149 215 150
-42 132 214 215 131
-43 132 226 227 131
-44 143 144 226 227
-45 143 144 238 239
-46 125 126 238 239
-47 220 221 125 126
-48 220 221 137 138
-49 232 233 137 138
-50 232 233 149 150
-51 154 155 145 150
-52 132 154 155 127
-53 132 166 167 127
-54 144 166 167 139
-55 144 178 179 139
-56 121 178 179 126
-57 121 126 160 161
-58 133 138 160 161
-59 133 138 172 173
-60 145 150 172 173
-61 177 178 212 213
-62 212 213 159 160
-63 224 159 225 160
-64 224 225 171 172
-65 236 171 237 172
-66 154 236 237 153
-67 154 218 153 219
-68 165 166 218 219
-69 165 231 166 230
-70 231 177 178 230
-71 176 177 182 183
-72 158 159 182 183
-73 158 159 194 195
-74 170 171 194 195
-75 170 171 206 207
-76 206 152 207 153
-77 188 189 152 153
-78 165 188 189 164
-79 165 200 201 164
-80 176 177 200 201
-81 211 216 207 208
-82 189 211 190 216
-83 189 190 223 228
-84 201 223 202 228
-85 201 202 235 240
-86 235 183 184 240
-87 222 183 184 217
-88 222 195 217 196
-89 234 195 196 229
-90 234 207 229 208
-91 180 215 216 175
-92 157 215 216 162
-93 157 227 162 228
-94 169 227 228 174
-95 169 239 174 240
-96 156 151 239 240
-97 221 156 222 151
-98 221 222 168 163
-99 233 168 234 163
-100 233 234 180 175
-101 179 180 185 186
-102 161 162 185 186
-103 198 161 162 197
-104 198 173 174 197
-105 209 210 173 174
-106 209 155 210 156
-107 155 156 191 192
-108 167 168 191 192
-109 167 168 203 204
-110 179 180 203 204
-111 210 213 214 205
-112 187 213 192 214
-113 187 192 225 226
-114 199 225 204 226
-115 199 204 237 238
-116 181 237 238 186
-117 220 181 186 219
-118 198 220 193 219
-119 198 231 232 193
-120 231 210 232 205
-121 56 57 6 7
-122 16 6 17 7
-123 26 16 27 17
-124 36 26 37 27
-125 46 36 47 37
-126 56 46 57 47
-127 2 3 52 53
-128 12 2 13 3
-129 22 12 23 13
-130 22 33 23 32
-131 33 42 32 43
-132 52 42 53 43
-133 58 59 8 9
-134 18 8 19 9
-135 28 18 29 19
-136 38 28 39 29
-137 48 38 49 39
-138 58 48 59 49
-139 55 4 5 54
-140 14 4 15 5
-141 24 14 25 15
-142 34 24 35 25
-143 44 34 45 35
-144 44 55 45 54
-145 1 60 51 10
-146 11 1 20 10
-147 11 30 20 21
-148 40 30 31 21
-149 50 40 41 31
-150 60 50 51 41
-151 22 96 97 21
-152 22 77 21 76
-153 66 77 67 76
-154 66 67 51 52
-155 51 106 52 107
-156 106 96 107 97
-157 92 27 93 28
-158 27 28 72 73
-159 72 62 73 63
-160 57 58 62 63
-161 57 58 102 103
-162 102 92 103 93
-163 99 23 24 98
-164 23 78 24 79
-165 78 68 79 69
-166 68 69 53 54
-167 53 108 54 109
-168 99 108 98 109
-169 94 29 95 30
-170 29 30 74 75
-171 74 64 75 65
-172 59 60 64 65
-173 59 60 104 105
-174 104 94 105 95
-175 100 25 91 26
-176 25 80 26 71
-177 80 70 71 61
-178 55 56 70 61
-179 55 110 56 101
-180 110 100 101 91
-181 1 2 116 117
-182 1 2 71 72
-183 71 72 86 87
-184 31 86 32 87
-185 101 102 31 32
-186 101 102 116 117
-187 112 113 7 8
-188 77 78 7 8
-189 77 78 82 83
-190 37 38 82 83
-191 37 38 107 108
-192 112 113 107 108
-193 3 4 118 119
-194 3 4 73 74
-195 88 89 73 74
-196 33 88 34 89
-197 33 34 103 104
-198 103 104 118 119
-199 114 115 9 10
-200 79 80 9 10
-201 79 80 84 85
-202 39 40 84 85
-203 110 39 40 109
-204 110 114 115 109
-205 111 5 6 120
-206 5 6 75 76
-207 90 81 75 76
-208 35 90 36 81
-209 35 36 105 106
-210 111 105 106 120
-211 11 12 81 82
-212 11 12 61 62
-213 111 112 61 62
-214 111 112 41 42
-215 91 92 41 42
-216 91 81 92 82
-217 88 17 18 87
-218 67 68 17 18
-219 67 68 117 118
-220 47 48 117 118
-221 47 48 97 98
-222 88 97 87 98
-223 13 14 83 84
-224 13 14 63 64
-225 113 114 63 64
-226 44 113 114 43
-227 44 93 94 43
-228 93 83 94 84
-229 89 90 19 20
-230 69 70 19 20
-231 69 70 119 120
-232 49 50 119 120
-233 99 100 49 50
-234 99 89 100 90
-235 15 16 85 86
-236 66 15 16 65
-237 66 115 116 65
-238 45 46 115 116
-239 45 46 95 96
-240 95 85 96 86
0