[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 127 ] =
PL(CS(W(15,2)[15^4],0)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {57, 121}, {58, 121}, {26, 127}, {25, 127}, {22, 126}, {22, 127},
{21, 127}, {21, 126}, {17, 125}, {18, 126}, {17, 126}, {18, 125}, {13, 125},
{10, 123}, {13, 124}, {9, 123}, {14, 124}, {14, 125}, {9, 124}, {10, 124}, {1,
121}, {2, 122}, {1, 122}, {2, 121}, {6, 122}, {6, 123}, {5, 123}, {5, 122}, {11,
139}, {71, 199}, {45, 173}, {8, 137}, {71, 198}, {68, 197}, {11, 138}, {45,
172}, {105, 232}, {8, 138}, {68, 198}, {34, 160}, {35, 161}, {94, 220}, {15,
140}, {34, 161}, {35, 160}, {95, 220}, {15, 139}, {77, 201}, {65, 197}, {95,
219}, {108, 232}, {77, 200}, {94, 219}, {12, 138}, {12, 139}, {65, 198}, {86,
222}, {97, 233}, {87, 222}, {3, 137}, {87, 221}, {96, 234}, {109, 231}, {3,
136}, {36, 175}, {86, 221}, {96, 235}, {97, 234}, {108, 231}, {109, 230}, {4,
136}, {82, 222}, {83, 223}, {4, 137}, {7, 138}, {82, 223}, {83, 222}, {100,
233}, {7, 137}, {72, 198}, {33, 175}, {100, 234}, {105, 231}, {31, 144}, {72,
199}, {31, 143}, {117, 229}, {57, 169}, {92, 204}, {33, 176}, {117, 228}, {10,
152}, {28, 142}, {89, 203}, {95, 205}, {11, 152}, {57, 170}, {28, 143}, {95,
204}, {27, 143}, {71, 211}, {36, 176}, {24, 141}, {70, 211}, {60, 169}, {27,
142}, {89, 204}, {24, 142}, {63, 169}, {60, 170}, {112, 230}, {63, 168}, {92,
203}, {112, 231}, {20, 140}, {38, 190}, {39, 191}, {80, 200}, {20, 141}, {23,
142}, {25, 128}, {38, 191}, {39, 190}, {80, 201}, {83, 202}, {23, 141}, {26,
128}, {83, 201}, {16, 139}, {11, 151}, {120, 228}, {16, 140}, {29, 129}, {48,
172}, {10, 151}, {120, 229}, {29, 128}, {48, 173}, {84, 201}, {19, 141}, {30,
128}, {84, 202}, {19, 140}, {30, 129}, {27, 187}, {118, 214}, {113, 209}, {59,
155}, {58, 154}, {33, 129}, {34, 130}, {52, 148}, {26, 187}, {119, 214}, {59,
154}, {58, 155}, {55, 150}, {52, 149}, {55, 149}, {119, 213}, {33, 130}, {118,
213}, {113, 210}, {76, 239}, {64, 227}, {34, 129}, {48, 147}, {108, 207}, {38,
130}, {64, 228}, {62, 154}, {61, 153}, {48, 148}, {107, 207}, {38, 131}, {119,
210}, {116, 209}, {21, 179}, {116, 210}, {73, 239}, {71, 225}, {26, 188}, {37,
131}, {51, 149}, {102, 192}, {104, 206}, {21, 178}, {70, 225}, {69, 226}, {62,
153}, {61, 154}, {27, 188}, {37, 130}, {51, 148}, {103, 192}, {104, 207}, {45,
133}, {105, 193}, {42, 131}, {45, 132}, {105, 192}, {12, 166}, {120, 210}, {75,
225}, {74, 224}, {72, 226}, {60, 150}, {24, 178}, {41, 131}, {46, 132}, {101,
207}, {106, 192}, {12, 167}, {75, 224}, {74, 225}, {24, 179}, {46, 133}, {101,
206}, {106, 193}, {96, 204}, {41, 132}, {59, 150}, {56, 149}, {96, 205}, {9,
167}, {56, 150}, {42, 132}, {9, 166}, {32, 143}, {32, 144}, {115, 195}, {114,
194}, {54, 134}, {46, 158}, {47, 158}, {115, 194}, {114, 195}, {54, 135}, {22,
164}, {35, 145}, {47, 157}, {53, 135}, {106, 216}, {107, 217}, {23, 164}, {119,
196}, {59, 136}, {35, 144}, {46, 157}, {53, 134}, {106, 217}, {107, 216}, {2,
182}, {60, 136}, {23, 163}, {36, 144}, {49, 133}, {50, 134}, {88, 236}, {3,
182}, {118, 195}, {69, 240}, {22, 163}, {36, 145}, {39, 146}, {88, 237}, {3,
181}, {117, 195}, {14, 184}, {15, 185}, {39, 145}, {93, 235}, {110, 216}, {2,
181}, {14, 185}, {15, 184}, {49, 134}, {50, 133}, {93, 234}, {111, 216}, {43,
147}, {72, 240}, {85, 237}, {98, 218}, {99, 219}, {111, 215}, {40, 145}, {73,
240}, {43, 146}, {84, 237}, {85, 236}, {98, 219}, {99, 218}, {110, 215}, {40,
146}, {84, 238}, {47, 148}, {107, 208}, {47, 147}, {120, 196}, {76, 240}, {81,
237}, {108, 208}, {58, 135}, {44, 146}, {57, 135}, {44, 147}, {81, 238}, {4,
196}, {117, 181}, {41, 233}, {4, 197}, {41, 232}, {97, 160}, {30, 220}, {31,
221}, {98, 160}, {30, 221}, {118, 181}, {31, 220}, {111, 172}, {1, 197}, {44,
232}, {111, 171}, {1, 196}, {13, 200}, {44, 233}, {104, 173}, {104, 174}, {103,
174}, {13, 199}, {100, 174}, {103, 173}, {32, 235}, {100, 175}, {19, 223}, {32,
236}, {99, 175}, {18, 223}, {99, 174}, {53, 229}, {6, 212}, {25, 203}, {7, 212},
{53, 230}, {25, 202}, {7, 211}, {6, 211}, {28, 202}, {16, 199}, {28, 203}, {16,
200}, {115, 171}, {65, 153}, {103, 191}, {61, 228}, {115, 170}, {65, 152}, {102,
191}, {66, 152}, {66, 153}, {112, 171}, {112, 172}, {56, 229}, {74, 151}, {56,
230}, {116, 170}, {73, 151}, {61, 227}, {116, 171}, {49, 209}, {55, 215}, {54,
214}, {93, 189}, {94, 190}, {49, 208}, {55, 214}, {54, 215}, {68, 167}, {80,
179}, {93, 190}, {94, 189}, {52, 208}, {67, 167}, {80, 180}, {40, 205}, {52,
209}, {87, 178}, {5, 227}, {40, 206}, {87, 177}, {90, 188}, {91, 189}, {5, 226},
{90, 189}, {91, 188}, {37, 205}, {77, 165}, {64, 168}, {82, 186}, {64, 169},
{114, 155}, {77, 164}, {82, 187}, {88, 177}, {8, 226}, {76, 166}, {63, 213},
{62, 212}, {78, 164}, {81, 187}, {88, 178}, {91, 177}, {113, 155}, {8, 227},
{67, 168}, {63, 212}, {62, 213}, {37, 206}, {78, 165}, {81, 186}, {91, 176},
{68, 168}, {73, 165}, {92, 176}, {75, 166}, {92, 177}, {113, 156}, {114, 156},
{74, 165}, {42, 218}, {50, 194}, {109, 157}, {29, 236}, {70, 183}, {43, 218},
{51, 194}, {109, 156}, {18, 224}, {69, 183}, {43, 217}, {51, 193}, {110, 156},
{19, 224}, {42, 217}, {50, 193}, {110, 157}, {66, 182}, {67, 183}, {78, 186},
{86, 162}, {66, 183}, {67, 182}, {79, 186}, {86, 163}, {29, 235}, {79, 185},
{85, 163}, {78, 185}, {85, 162}, {76, 180}, {89, 161}, {90, 162}, {102, 158},
{102, 159}, {20, 238}, {101, 159}, {20, 239}, {79, 180}, {89, 162}, {90, 161},
{101, 158}, {79, 179}, {69, 184}, {98, 159}, {17, 239}, {70, 184}, {97, 159},
{17, 238}, {75, 180} }>;
(II) A more general form is to represent the graph as the orbit of {57, 121}
under the group generated by the following permutations:
a: (2, 4)(5, 68)(6, 65)(7, 66)(8, 67)(9, 72)(10, 71)(11, 70)(12, 69)(14, 16)(17,
80)(18, 77)(19, 78)(20, 79)(21, 84)(22, 83)(23, 82)(24, 81)(26, 28)(29, 92)(30,
89)(31, 90)(32, 91)(33, 96)(34, 95)(35, 94)(36, 93)(38, 40)(41, 104)(42,
101)(43, 102)(44, 103)(45, 108)(46, 107)(47, 106)(48, 105)(50, 52)(53, 116)(54,
113)(55, 114)(56, 115)(57, 120)(58, 119)(59, 118)(60, 117)(61, 63)(73, 75)(85,
87)(97, 99)(109, 111)(121, 196)(122, 197)(123, 198)(124, 199)(125, 200)(126,
201)(127, 202)(128, 203)(129, 204)(130, 205)(131, 206)(132, 207)(133, 208)(134,
209)(135, 210)(136, 181)(137, 182)(138, 183)(139, 184)(140, 185)(141, 186)(142,
187)(143, 188)(144, 189)(145, 190)(146, 191)(147, 192)(148, 193)(149, 194)(150,
195)(151, 225)(152, 211)(153, 212)(154, 213)(155, 214)(156, 215)(157, 216)(158,
217)(159, 218)(160, 219)(161, 220)(162, 221)(163, 222)(164, 223)(165, 224)(166,
240)(167, 226)(168, 227)(169, 228)(170, 229)(171, 230)(172, 231)(173, 232)(174,
233)(175, 234)(176, 235)(177, 236)(178, 237)(179, 238)(180, 239) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 4)(13, 14)(15, 16)(25, 26)(27, 28)(37, 38)(39, 40)(49, 50)(51,
52)(65, 66)(67, 68)(69, 72)(70, 71)(77, 78)(79, 80)(81, 84)(82, 83)(89, 90)(91,
92)(93, 96)(94, 95)(101, 102)(103, 104)(105, 108)(106, 107)(113, 114)(115,
116)(117, 120)(118, 119)(181, 196)(182, 197)(183, 198)(184, 199)(185, 200)(186,
201)(187, 202)(188, 203)(189, 204)(190, 205)(191, 206)(192, 207)(193, 208)(194,
209)(195, 210)
c: (9, 10)(11, 12)(21, 22)(23, 24)(33, 34)(35, 36)(45, 46)(47, 48)(57, 58)(59,
60)(61, 64)(62, 63)(65, 68)(66, 67)(73, 76)(74, 75)(77, 80)(78, 79)(85, 88)(86,
87)(89, 92)(90, 91)(97, 100)(98, 99)(101, 104)(102, 103)(109, 112)(110,
111)(113, 116)(114, 115)(151, 166)(152, 167)(153, 168)(154, 169)(155, 170)(156,
171)(157, 172)(158, 173)(159, 174)(160, 175)(161, 176)(162, 177)(163, 178)(164,
179)(165, 180)
d: (1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57)(2, 6, 10, 14, 18,
22, 26, 30, 34, 38, 42, 46, 50, 54, 58)(3, 7, 11, 15, 19, 23, 27, 31, 35, 39,
43, 47, 51, 55, 59)(4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
60)(61, 67, 71, 73, 79, 83, 85, 91, 95, 97, 103, 107, 109, 115, 119)(62, 66, 70,
74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118)(63, 65, 69, 75, 77, 81, 87,
89, 93, 99, 101, 105, 111, 113, 117)(64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
104, 108, 112, 116, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135)(136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150)(151, 185, 223, 163, 188, 220, 160, 191, 217, 157, 194, 214, 154,
182, 211)(152, 184, 224, 164, 187, 221, 161, 190, 218, 158, 193, 215, 155, 181,
212)(153, 183, 225, 165, 186, 222, 162, 189, 219, 159, 192, 216, 156, 195,
213)(166, 200, 238, 178, 203, 235, 175, 206, 232, 172, 209, 229, 169, 197,
226)(167, 199, 239, 179, 202, 236, 176, 205, 233, 173, 208, 230, 170, 196,
227)(168, 198, 240, 180, 201, 237, 177, 204, 234, 174, 207, 231, 171, 210,
228)
e: (5, 57)(6, 58)(7, 59)(8, 60)(9, 53)(10, 54)(11, 55)(12, 56)(13, 49)(14,
50)(15, 51)(16, 52)(17, 45)(18, 46)(19, 47)(20, 48)(21, 41)(22, 42)(23, 43)(24,
44)(25, 37)(26, 38)(27, 39)(28, 40)(29, 33)(30, 34)(31, 35)(32, 36)(61, 63)(65,
119)(66, 118)(67, 117)(68, 120)(69, 115)(70, 114)(71, 113)(72, 116)(73, 111)(74,
110)(75, 109)(76, 112)(77, 107)(78, 106)(79, 105)(80, 108)(81, 103)(82, 102)(83,
101)(84, 104)(85, 99)(86, 98)(87, 97)(88, 100)(89, 95)(90, 94)(91, 93)(92,
96)(121, 122)(123, 135)(124, 134)(125, 133)(126, 132)(127, 131)(128, 130)(136,
137)(138, 150)(139, 149)(140, 148)(141, 147)(142, 146)(143, 145)(151, 215)(152,
214)(153, 213)(154, 212)(155, 211)(156, 225)(157, 224)(158, 223)(159, 222)(160,
221)(161, 220)(162, 219)(163, 218)(164, 217)(165, 216)(166, 230)(167, 229)(168,
228)(169, 227)(170, 226)(171, 240)(172, 239)(173, 238)(174, 237)(175, 236)(176,
235)(177, 234)(178, 233)(179, 232)(180, 231)(181, 182)(183, 195)(184, 194)(185,
193)(186, 192)(187, 191)(188, 190)(196, 197)(198, 210)(199, 209)(200, 208)(201,
207)(202, 206)(203, 205)
f: (5, 6)(7, 8)(17, 18)(19, 20)(29, 30)(31, 32)(41, 42)(43, 44)(53, 54)(55,
56)(61, 62)(63, 64)(69, 70)(71, 72)(73, 74)(75, 76)(81, 82)(83, 84)(85, 86)(87,
88)(93, 94)(95, 96)(97, 98)(99, 100)(105, 106)(107, 108)(109, 110)(111,
112)(117, 118)(119, 120)(211, 226)(212, 227)(213, 228)(214, 229)(215, 230)(216,
231)(217, 232)(218, 233)(219, 234)(220, 235)(221, 236)(222, 237)(223, 238)(224,
239)(225, 240)
C4[ 240, 127 ]
240
-1 121 122 196 197
-2 121 122 181 182
-3 136 137 181 182
-4 136 137 196 197
-5 122 123 226 227
-6 122 123 211 212
-7 211 212 137 138
-8 137 138 226 227
-9 166 123 167 124
-10 123 124 151 152
-11 138 139 151 152
-12 166 167 138 139
-13 199 200 124 125
-14 124 125 184 185
-15 139 140 184 185
-16 199 200 139 140
-17 125 126 238 239
-18 223 125 224 126
-19 223 224 140 141
-20 238 140 239 141
-21 178 179 126 127
-22 126 127 163 164
-23 141 163 142 164
-24 178 179 141 142
-25 202 203 127 128
-26 187 188 127 128
-27 143 187 188 142
-28 143 202 203 142
-29 235 236 128 129
-30 220 221 128 129
-31 143 220 144 221
-32 143 144 235 236
-33 176 129 130 175
-34 160 161 129 130
-35 144 145 160 161
-36 176 144 145 175
-37 205 206 130 131
-38 190 191 130 131
-39 145 146 190 191
-40 145 146 205 206
-41 132 232 233 131
-42 132 217 218 131
-43 146 147 217 218
-44 232 233 146 147
-45 132 133 172 173
-46 132 133 157 158
-47 157 147 158 148
-48 147 148 172 173
-49 209 133 134 208
-50 133 134 193 194
-51 148 149 193 194
-52 209 148 149 208
-53 134 135 229 230
-54 134 135 214 215
-55 214 149 215 150
-56 149 150 229 230
-57 121 135 169 170
-58 121 154 155 135
-59 154 155 136 150
-60 136 169 170 150
-61 154 227 228 153
-62 154 212 213 153
-63 168 212 169 213
-64 168 169 227 228
-65 198 152 153 197
-66 182 183 152 153
-67 167 168 182 183
-68 198 167 168 197
-69 226 183 184 240
-70 211 225 183 184
-71 198 199 211 225
-72 198 199 226 240
-73 165 151 239 240
-74 165 224 225 151
-75 166 180 224 225
-76 166 180 239 240
-77 165 200 201 164
-78 165 185 164 186
-79 179 180 185 186
-80 200 179 201 180
-81 187 237 238 186
-82 187 222 223 186
-83 222 201 223 202
-84 201 202 237 238
-85 236 237 162 163
-86 221 222 162 163
-87 177 221 178 222
-88 177 178 236 237
-89 203 204 161 162
-90 188 189 161 162
-91 176 177 188 189
-92 176 177 203 204
-93 189 190 234 235
-94 220 189 190 219
-95 220 204 205 219
-96 234 235 204 205
-97 233 234 159 160
-98 159 160 218 219
-99 174 218 175 219
-100 233 234 174 175
-101 158 159 206 207
-102 158 191 159 192
-103 191 192 173 174
-104 173 206 174 207
-105 231 232 192 193
-106 192 193 216 217
-107 216 217 207 208
-108 231 232 207 208
-109 231 156 157 230
-110 156 157 215 216
-111 171 215 172 216
-112 231 171 172 230
-113 209 155 210 156
-114 155 156 194 195
-115 170 171 194 195
-116 209 210 170 171
-117 181 195 228 229
-118 213 181 214 195
-119 210 213 214 196
-120 210 228 196 229
-121 1 2 57 58
-122 1 2 5 6
-123 5 6 9 10
-124 13 14 9 10
-125 13 14 17 18
-126 22 17 18 21
-127 22 25 26 21
-128 25 26 29 30
-129 33 34 29 30
-130 33 34 37 38
-131 37 38 41 42
-132 45 46 41 42
-133 45 46 49 50
-134 49 50 53 54
-135 57 58 53 54
-136 3 4 59 60
-137 3 4 7 8
-138 11 12 7 8
-139 11 12 15 16
-140 15 16 19 20
-141 23 24 19 20
-142 23 24 27 28
-143 27 28 31 32
-144 35 36 31 32
-145 35 36 39 40
-146 44 39 40 43
-147 44 47 48 43
-148 47 48 51 52
-149 55 56 51 52
-150 55 56 59 60
-151 11 73 74 10
-152 11 66 10 65
-153 66 61 62 65
-154 58 59 61 62
-155 58 113 59 114
-156 110 113 114 109
-157 110 46 47 109
-158 46 101 47 102
-159 101 102 97 98
-160 34 35 97 98
-161 34 89 35 90
-162 89 90 85 86
-163 22 23 85 86
-164 22 77 23 78
-165 77 78 73 74
-166 12 9 75 76
-167 12 67 68 9
-168 67 68 63 64
-169 57 60 63 64
-170 57 60 115 116
-171 111 112 115 116
-172 45 111 112 48
-173 45 48 103 104
-174 99 100 103 104
-175 33 99 100 36
-176 33 36 91 92
-177 88 91 92 87
-178 88 24 21 87
-179 24 79 80 21
-180 79 80 75 76
-181 2 3 117 118
-182 66 67 2 3
-183 66 67 69 70
-184 14 69 15 70
-185 78 79 14 15
-186 78 79 81 82
-187 26 81 27 82
-188 90 91 26 27
-189 90 91 93 94
-190 38 93 39 94
-191 102 103 38 39
-192 102 103 105 106
-193 50 105 51 106
-194 114 115 50 51
-195 114 115 117 118
-196 1 4 119 120
-197 1 68 4 65
-198 68 71 72 65
-199 13 16 71 72
-200 77 13 80 16
-201 77 80 83 84
-202 25 28 83 84
-203 89 25 92 28
-204 89 92 95 96
-205 37 40 95 96
-206 101 37 104 40
-207 101 104 107 108
-208 49 52 107 108
-209 113 49 116 52
-210 113 116 119 120
-211 70 71 6 7
-212 6 7 62 63
-213 62 63 118 119
-214 55 118 119 54
-215 55 110 111 54
-216 110 111 106 107
-217 106 107 42 43
-218 99 42 43 98
-219 99 94 95 98
-220 94 95 30 31
-221 30 31 86 87
-222 82 83 86 87
-223 82 83 18 19
-224 18 19 74 75
-225 70 71 74 75
-226 69 5 72 8
-227 5 61 8 64
-228 61 117 64 120
-229 56 117 53 120
-230 56 112 53 109
-231 112 105 108 109
-232 44 105 41 108
-233 44 100 41 97
-234 100 93 96 97
-235 93 29 96 32
-236 88 29 85 32
-237 88 81 84 85
-238 81 17 84 20
-239 17 73 20 76
-240 69 72 73 76
0