C4graphGraph forms for C4 [ 240, 138 ] = PL(CS(Pr_10(1,1,2,2)[5^12],0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 138 ] = PL(CS(Pr_10(1,1,2,2)[5^12],0)).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {85, 125}, {85, 124}, {86, 124}, {86, 125}, {80, 126}, {77, 125}, {79, 126}, {78, 125}, {77, 121}, {78, 121}, {45, 124}, {46, 124}, {46, 123}, {45, 123}, {8, 127}, {1, 121}, {2, 122}, {7, 127}, {4, 126}, {1, 122}, {2, 121}, {4, 127}, {3, 127}, {6, 122}, {3, 126}, {6, 123}, {5, 123}, {5, 122}, {3, 131}, {71, 199}, {63, 191}, {75, 203}, {100, 228}, {112, 240}, {2, 131}, {71, 198}, {62, 191}, {53, 180}, {74, 203}, {100, 229}, {59, 185}, {60, 190}, {98, 224}, {109, 239}, {57, 186}, {58, 185}, {99, 224}, {10, 142}, {70, 194}, {69, 193}, {64, 196}, {90, 222}, {91, 223}, {97, 229}, {110, 234}, {111, 235}, {10, 143}, {117, 240}, {53, 176}, {90, 223}, {91, 222}, {97, 228}, {110, 235}, {111, 234}, {2, 132}, {60, 186}, {9, 143}, {74, 204}, {104, 238}, {3, 132}, {70, 193}, {69, 194}, {57, 190}, {7, 128}, {9, 142}, {75, 204}, {104, 239}, {1, 137}, {120, 240}, {64, 200}, {56, 176}, {6, 142}, {8, 128}, {1, 136}, {7, 142}, {108, 229}, {7, 141}, {68, 206}, {67, 201}, {80, 218}, {101, 239}, {106, 224}, {107, 225}, {108, 230}, {6, 141}, {66, 201}, {80, 219}, {101, 238}, {106, 225}, {107, 224}, {4, 136}, {63, 179}, {56, 180}, {82, 222}, {102, 234}, {105, 229}, {4, 137}, {63, 178}, {16, 157}, {45, 160}, {83, 222}, {96, 237}, {103, 234}, {16, 158}, {72, 198}, {67, 205}, {59, 181}, {83, 221}, {96, 238}, {103, 233}, {58, 181}, {72, 199}, {66, 205}, {65, 206}, {82, 221}, {102, 233}, {105, 230}, {12, 156}, {119, 231}, {72, 216}, {71, 215}, {62, 174}, {61, 173}, {48, 160}, {12, 157}, {118, 231}, {70, 215}, {15, 158}, {10, 152}, {116, 230}, {115, 225}, {59, 169}, {52, 166}, {15, 157}, {51, 161}, {11, 152}, {114, 225}, {113, 226}, {65, 210}, {62, 173}, {61, 174}, {59, 168}, {50, 161}, {9, 157}, {120, 236}, {72, 220}, {71, 211}, {60, 168}, {13, 153}, {9, 156}, {70, 211}, {60, 169}, {13, 152}, {5, 147}, {116, 226}, {68, 210}, {51, 165}, {14, 152}, {77, 219}, {5, 146}, {113, 230}, {14, 153}, {49, 166}, {50, 165}, {77, 218}, {11, 147}, {55, 175}, {12, 148}, {73, 209}, {78, 214}, {54, 175}, {117, 236}, {73, 208}, {69, 220}, {58, 163}, {79, 214}, {8, 146}, {57, 163}, {79, 213}, {8, 147}, {49, 170}, {78, 213}, {11, 151}, {119, 235}, {55, 171}, {76, 208}, {10, 151}, {118, 235}, {69, 216}, {57, 164}, {54, 171}, {76, 209}, {109, 240}, {52, 170}, {58, 164}, {11, 148}, {12, 147}, {112, 239}, {17, 177}, {118, 214}, {52, 148}, {22, 182}, {27, 187}, {28, 188}, {37, 133}, {44, 140}, {17, 176}, {118, 215}, {115, 210}, {52, 149}, {23, 182}, {37, 132}, {40, 137}, {49, 144}, {23, 181}, {117, 215}, {115, 209}, {24, 186}, {38, 132}, {40, 138}, {50, 144}, {22, 181}, {120, 219}, {117, 214}, {24, 187}, {38, 133}, {43, 136}, {20, 176}, {120, 220}, {27, 191}, {44, 136}, {20, 177}, {116, 209}, {23, 178}, {26, 191}, {23, 177}, {116, 210}, {56, 158}, {43, 141}, {51, 149}, {27, 188}, {56, 159}, {28, 187}, {42, 141}, {43, 140}, {51, 148}, {111, 200}, {55, 159}, {111, 199}, {24, 177}, {55, 158}, {42, 131}, {13, 167}, {24, 178}, {41, 131}, {13, 166}, {119, 220}, {14, 162}, {119, 219}, {54, 154}, {53, 153}, {26, 182}, {48, 156}, {110, 194}, {15, 162}, {26, 183}, {39, 138}, {42, 135}, {110, 195}, {15, 161}, {115, 221}, {21, 187}, {25, 183}, {39, 137}, {41, 135}, {47, 129}, {109, 195}, {14, 161}, {114, 221}, {54, 153}, {53, 154}, {21, 186}, {25, 182}, {47, 128}, {109, 194}, {18, 162}, {48, 128}, {87, 231}, {93, 237}, {18, 163}, {45, 156}, {48, 129}, {86, 231}, {17, 163}, {81, 227}, {17, 162}, {20, 167}, {81, 226}, {93, 238}, {19, 167}, {47, 155}, {88, 236}, {46, 155}, {88, 237}, {16, 166}, {84, 226}, {94, 232}, {95, 233}, {16, 167}, {84, 227}, {94, 233}, {95, 232}, {112, 199}, {19, 171}, {21, 173}, {47, 151}, {85, 237}, {92, 228}, {112, 200}, {18, 171}, {21, 172}, {46, 151}, {85, 236}, {22, 172}, {43, 145}, {44, 150}, {89, 227}, {19, 168}, {22, 173}, {41, 146}, {42, 145}, {20, 168}, {113, 205}, {99, 223}, {50, 143}, {113, 204}, {89, 228}, {98, 223}, {18, 172}, {114, 204}, {44, 146}, {49, 143}, {86, 232}, {19, 172}, {114, 205}, {41, 150}, {87, 232}, {92, 227}, {75, 139}, {95, 159}, {96, 160}, {75, 138}, {94, 154}, {97, 165}, {94, 155}, {97, 164}, {76, 138}, {93, 155}, {98, 164}, {76, 139}, {93, 154}, {98, 165}, {89, 145}, {102, 174}, {89, 144}, {92, 149}, {99, 170}, {102, 175}, {90, 144}, {92, 150}, {99, 169}, {101, 175}, {90, 145}, {101, 174}, {73, 133}, {74, 134}, {79, 130}, {91, 150}, {100, 169}, {91, 149}, {100, 170}, {73, 134}, {74, 133}, {105, 185}, {105, 184}, {108, 189}, {29, 207}, {80, 130}, {106, 184}, {108, 190}, {29, 206}, {103, 180}, {106, 185}, {30, 202}, {82, 134}, {103, 179}, {31, 202}, {82, 135}, {87, 130}, {107, 190}, {31, 201}, {81, 135}, {87, 129}, {107, 189}, {30, 201}, {81, 134}, {28, 196}, {83, 139}, {84, 140}, {28, 197}, {31, 198}, {88, 129}, {26, 192}, {31, 197}, {88, 130}, {27, 192}, {104, 179}, {25, 197}, {29, 193}, {104, 180}, {25, 196}, {29, 192}, {30, 192}, {30, 193}, {83, 140}, {84, 139}, {32, 197}, {32, 198}, {34, 202}, {34, 203}, {33, 203}, {33, 202}, {36, 207}, {35, 207}, {32, 206}, {32, 207}, {35, 211}, {34, 211}, {40, 217}, {38, 212}, {64, 178}, {39, 213}, {40, 218}, {35, 208}, {64, 179}, {38, 213}, {39, 212}, {36, 208}, {61, 200}, {66, 183}, {34, 212}, {65, 183}, {35, 212}, {33, 217}, {68, 188}, {33, 216}, {68, 189}, {65, 184}, {61, 196}, {66, 184}, {36, 216}, {63, 195}, {37, 217}, {36, 217}, {62, 195}, {67, 189}, {37, 218}, {67, 188}, {95, 160}, {96, 159} }>;

(II) A more general form is to represent the graph as the orbit of {85, 125} under the group generated by the following permutations:

a: (17, 18)(19, 20)(21, 24)(22, 23)(53, 54)(55, 56)(61, 64)(62, 63)(101, 104)(102, 103)(171, 176)(172, 177)(173, 178)(174, 179)(175, 180)
b: (29, 30)(31, 32)(33, 36)(34, 35)(65, 66)(67, 68)(73, 74)(75, 76)(81, 82)(83, 84)(89, 90)(91, 92)(97, 98)(99, 100)(105, 106)(107, 108)(113, 115)(114, 116)(201, 206)(202, 207)(203, 208)(204, 209)(205, 210)(221, 226)(222, 227)(223, 228)(224, 229)(225, 230)
c: (2, 4)(5, 40)(6, 39)(7, 38)(8, 37)(9, 35)(10, 34)(11, 33)(12, 36)(13, 30, 14, 31)(15, 32, 16, 29)(17, 25, 19, 27)(18, 28, 20, 26)(21, 24, 23, 22)(41, 80)(42, 79)(43, 78)(44, 77)(45, 76)(46, 75)(47, 74)(48, 73)(49, 70, 50, 71)(51, 72, 52, 69)(53, 66, 54, 67)(55, 68, 56, 65)(57, 64, 59, 62)(58, 61, 60, 63)(81, 88)(82, 87)(83, 86)(84, 85)(89, 117)(90, 118)(91, 119)(92, 120)(93, 113)(94, 114)(95, 115)(96, 116)(97, 112, 100, 109)(98, 111, 99, 110)(101, 108, 104, 105)(102, 107, 103, 106)(121, 136)(122, 137)(123, 138)(124, 139)(125, 140)(126, 131)(127, 132)(128, 133)(129, 134)(130, 135)(141, 213)(142, 212)(143, 211)(144, 215)(145, 214)(146, 218)(147, 217)(148, 216)(149, 220)(150, 219)(151, 203)(152, 202)(153, 201)(154, 205)(155, 204)(156, 208)(157, 207)(158, 206)(159, 210)(160, 209)(161, 198, 166, 193)(162, 197, 167, 192)(163, 196, 168, 191)(164, 200, 169, 195)(165, 199, 170, 194)(171, 188, 176, 183)(172, 187, 177, 182)(173, 186, 178, 181)(174, 190, 179, 185)(175, 189, 180, 184)(221, 232)(222, 231)(223, 235)(224, 234)(225, 233)(226, 237)(227, 236)(228, 240)(229, 239)(230, 238)
d: (81, 82)(83, 84)(89, 90)(91, 92)(97, 98)(99, 100)(105, 106)(107, 108)(113, 114)(115, 116)(221, 226)(222, 227)(223, 228)(224, 229)(225, 230)
e: (85, 86)(87, 88)(93, 94)(95, 96)(101, 102)(103, 104)(109, 110)(111, 112)(117, 118)(119, 120)(231, 236)(232, 237)(233, 238)(234, 239)(235, 240)
f: (25, 26)(27, 28)(29, 32)(30, 31)(61, 62)(63, 64)(69, 72)(70, 71)(109, 112)(110, 111)(191, 196)(192, 197)(193, 198)(194, 199)(195, 200)
g: (9, 10)(11, 12)(13, 16)(14, 15)(45, 46)(47, 48)(53, 56)(54, 55)(85, 86)(87, 88)(93, 95)(94, 96)(101, 102)(103, 104)(109, 110)(111, 112)(117, 118)(119, 120)(151, 156)(152, 157)(153, 158)(154, 159)(155, 160)(231, 236)(232, 237)(233, 238)(234, 239)(235, 240)
h: (33, 34)(35, 36)(37, 38)(39, 40)(69, 70)(71, 72)(77, 78)(79, 80)(117, 120)(118, 119)(211, 216)(212, 217)(213, 218)(214, 219)(215, 220)
m: (13, 14)(15, 16)(17, 19)(18, 20)(21, 24)(22, 23)(49, 50)(51, 52)(53, 54)(55, 56)(57, 60)(58, 59)(61, 64)(62, 63)(97, 100)(98, 99)(101, 104)(102, 103)(161, 166)(162, 167)(163, 168)(164, 169)(165, 170)(171, 176)(172, 177)(173, 178)(174, 179)(175, 180)
n1: (2, 4)(5, 44)(6, 43)(7, 42)(8, 41)(9, 90)(10, 89)(11, 92)(12, 91)(13, 100)(14, 97)(15, 98)(16, 99)(17, 57)(18, 58)(19, 59)(20, 60)(21, 23)(25, 61)(26, 62)(27, 63)(28, 64)(29, 110)(30, 109)(31, 112)(32, 111)(33, 120)(34, 117)(35, 118)(36, 119)(37, 80)(38, 79)(39, 78)(40, 77)(45, 83)(46, 84)(47, 81)(48, 82)(53, 108)(54, 105)(55, 106)(56, 107)(65, 102)(66, 101)(67, 104)(68, 103)(73, 87)(74, 88)(75, 85)(76, 86)(93, 113)(94, 116)(95, 115)(96, 114)(121, 137)(122, 136)(123, 140)(124, 139)(125, 138)(126, 132)(127, 131)(128, 135)(129, 134)(130, 133)(142, 145)(143, 144)(147, 150)(148, 149)(151, 227)(152, 228)(153, 229)(154, 230)(155, 226)(156, 222)(157, 223)(158, 224)(159, 225)(160, 221)(161, 165)(162, 164)(166, 170)(167, 169)(171, 185)(172, 181)(173, 182)(174, 183)(175, 184)(176, 190)(177, 186)(178, 187)(179, 188)(180, 189)(192, 195)(193, 194)(197, 200)(198, 199)(201, 239)(202, 240)(203, 236)(204, 237)(205, 238)(206, 234)(207, 235)(208, 231)(209, 232)(210, 233)(211, 215)(212, 214)(216, 220)(217, 219)
a1: (1, 2)(3, 4)(37, 40)(38, 39)(41, 44)(42, 43)(73, 76)(74, 75)(81, 84)(82, 83)(131, 136)(132, 137)(133, 138)(134, 139)(135, 140)
b1: (5, 6)(7, 8)(9, 12)(10, 11)(41, 42)(43, 44)(49, 52)(50, 51)(89, 92)(90, 91)(141, 146)(142, 147)(143, 148)(144, 149)(145, 150)
c1: (1, 5, 12, 16, 20, 24, 28, 32, 36, 40)(2, 8, 9, 13, 17, 21, 25, 29, 33, 39)(3, 7, 10, 14, 18, 22, 26, 30, 34, 38)(4, 6, 11, 15, 19, 23, 27, 31, 35, 37)(41, 48, 49, 53, 57, 61, 65, 69, 75, 78)(42, 47, 50, 54, 58, 62, 66, 70, 74, 79)(43, 46, 51, 55, 59, 63, 67, 71, 73, 80)(44, 45, 52, 56, 60, 64, 68, 72, 76, 77)(81, 88, 89, 93, 97, 101, 105, 109, 113, 117)(82, 87, 90, 94, 98, 102, 106, 110, 114, 118)(83, 86, 91, 95, 99, 103, 107, 111, 115, 119)(84, 85, 92, 96, 100, 104, 108, 112, 116, 120)(121, 146, 156, 166, 176, 186, 196, 206, 216, 138)(122, 147, 157, 167, 177, 187, 197, 207, 217, 137)(123, 148, 158, 168, 178, 188, 198, 208, 218, 136)(124, 149, 159, 169, 179, 189, 199, 209, 219, 140)(125, 150, 160, 170, 180, 190, 200, 210, 220, 139)(126, 141, 151, 161, 171, 181, 191, 201, 211, 133)(127, 142, 152, 162, 172, 182, 192, 202, 212, 132)(128, 143, 153, 163, 173, 183, 193, 203, 213, 131)(129, 144, 154, 164, 174, 184, 194, 204, 214, 135)(130, 145, 155, 165, 175, 185, 195, 205, 215, 134)(221, 231, 222, 232, 223, 233, 224, 234, 225, 235)(226, 236, 227, 237, 228, 238, 229, 239, 230, 240)
d1: (21, 22)(23, 24)(25, 28)(26, 27)(57, 58)(59, 60)(65, 68)(66, 67)(105, 108)(106, 107)(181, 186)(182, 187)(183, 188)(184, 189)(185, 190)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 138 ]
240
-1 121 122 136 137
-2 121 132 122 131
-3 132 126 127 131
-4 136 126 137 127
-5 122 123 146 147
-6 122 123 141 142
-7 127 128 141 142
-8 146 147 127 128
-9 143 156 157 142
-10 143 151 152 142
-11 147 148 151 152
-12 156 157 147 148
-13 166 167 152 153
-14 161 162 152 153
-15 157 158 161 162
-16 166 167 157 158
-17 176 177 162 163
-18 171 172 162 163
-19 167 168 171 172
-20 176 177 167 168
-21 187 172 173 186
-22 181 182 172 173
-23 177 178 181 182
-24 187 177 178 186
-25 182 183 196 197
-26 191 192 182 183
-27 187 188 191 192
-28 187 188 196 197
-29 192 193 206 207
-30 201 202 192 193
-31 198 201 202 197
-32 198 206 207 197
-33 202 203 216 217
-34 211 212 202 203
-35 211 212 207 208
-36 216 217 207 208
-37 132 133 217 218
-38 132 133 212 213
-39 212 213 137 138
-40 137 138 217 218
-41 135 146 150 131
-42 145 135 141 131
-43 145 136 140 141
-44 146 136 150 140
-45 123 156 124 160
-46 155 123 124 151
-47 155 128 129 151
-48 156 160 128 129
-49 143 144 166 170
-50 143 165 144 161
-51 165 148 149 161
-52 166 148 170 149
-53 154 176 180 153
-54 154 171 153 175
-55 158 159 171 175
-56 176 158 180 159
-57 190 163 164 186
-58 181 163 185 164
-59 168 169 181 185
-60 168 190 169 186
-61 200 173 174 196
-62 191 173 195 174
-63 178 179 191 195
-64 178 200 179 196
-65 210 183 184 206
-66 201 183 205 184
-67 188 189 201 205
-68 188 210 189 206
-69 220 193 194 216
-70 211 193 215 194
-71 198 199 211 215
-72 198 220 199 216
-73 209 133 134 208
-74 133 134 203 204
-75 203 138 204 139
-76 209 138 139 208
-77 121 125 218 219
-78 121 125 213 214
-79 213 126 214 130
-80 126 130 218 219
-81 134 135 226 227
-82 221 134 222 135
-83 221 222 139 140
-84 226 139 227 140
-85 124 125 236 237
-86 231 232 124 125
-87 231 232 129 130
-88 236 237 129 130
-89 144 145 227 228
-90 144 145 222 223
-91 222 223 149 150
-92 149 150 227 228
-93 154 155 237 238
-94 154 155 232 233
-95 232 233 159 160
-96 159 160 237 238
-97 165 228 229 164
-98 165 223 224 164
-99 223 169 224 170
-100 169 170 228 229
-101 238 239 174 175
-102 233 234 174 175
-103 233 179 234 180
-104 179 180 238 239
-105 184 185 229 230
-106 224 225 184 185
-107 189 190 224 225
-108 189 190 229 230
-109 194 195 239 240
-110 234 235 194 195
-111 199 200 234 235
-112 199 200 239 240
-113 204 226 205 230
-114 221 225 204 205
-115 209 210 221 225
-116 209 210 226 230
-117 214 236 215 240
-118 231 235 214 215
-119 220 231 235 219
-120 220 236 240 219
-121 77 1 78 2
-122 1 2 5 6
-123 45 46 5 6
-124 45 46 85 86
-125 77 78 85 86
-126 79 3 80 4
-127 3 4 7 8
-128 47 48 7 8
-129 88 47 48 87
-130 88 79 80 87
-131 2 3 41 42
-132 2 3 37 38
-133 37 38 73 74
-134 81 82 73 74
-135 81 82 41 42
-136 44 1 4 43
-137 1 4 39 40
-138 39 40 75 76
-139 83 84 75 76
-140 44 83 84 43
-141 6 7 42 43
-142 6 7 9 10
-143 49 50 9 10
-144 89 90 49 50
-145 89 90 42 43
-146 44 5 8 41
-147 11 12 5 8
-148 11 12 51 52
-149 91 92 51 52
-150 44 91 92 41
-151 11 46 47 10
-152 11 13 14 10
-153 13 14 53 54
-154 93 94 53 54
-155 46 47 93 94
-156 12 45 48 9
-157 12 15 16 9
-158 55 56 15 16
-159 55 56 95 96
-160 45 48 95 96
-161 14 15 50 51
-162 14 15 17 18
-163 57 58 17 18
-164 57 58 97 98
-165 50 51 97 98
-166 13 16 49 52
-167 13 16 19 20
-168 59 60 19 20
-169 99 100 59 60
-170 99 100 49 52
-171 55 18 19 54
-172 22 18 19 21
-173 22 61 62 21
-174 101 102 61 62
-175 55 101 102 54
-176 56 17 20 53
-177 23 24 17 20
-178 23 24 63 64
-179 103 104 63 64
-180 56 103 104 53
-181 22 23 58 59
-182 22 23 25 26
-183 66 25 26 65
-184 66 105 106 65
-185 58 59 105 106
-186 24 57 60 21
-187 24 27 28 21
-188 67 68 27 28
-189 67 68 107 108
-190 57 60 107 108
-191 26 27 62 63
-192 26 27 29 30
-193 69 70 29 30
-194 110 69 70 109
-195 110 62 63 109
-196 25 28 61 64
-197 25 28 31 32
-198 71 72 31 32
-199 111 112 71 72
-200 111 112 61 64
-201 66 67 30 31
-202 33 34 30 31
-203 33 34 74 75
-204 113 114 74 75
-205 66 67 113 114
-206 68 29 32 65
-207 35 36 29 32
-208 35 36 73 76
-209 115 116 73 76
-210 68 115 116 65
-211 34 35 70 71
-212 34 35 38 39
-213 78 79 38 39
-214 78 79 117 118
-215 70 71 117 118
-216 33 36 69 72
-217 33 36 37 40
-218 77 80 37 40
-219 77 80 119 120
-220 69 72 119 120
-221 114 82 115 83
-222 90 91 82 83
-223 99 90 91 98
-224 99 106 107 98
-225 114 115 106 107
-226 113 81 116 84
-227 89 81 92 84
-228 89 100 92 97
-229 100 105 97 108
-230 113 105 116 108
-231 118 86 119 87
-232 94 95 86 87
-233 102 103 94 95
-234 110 111 102 103
-235 110 111 118 119
-236 88 117 85 120
-237 88 93 85 96
-238 101 93 104 96
-239 101 112 104 109
-240 112 117 109 120
0

**************