C4graphGraph forms for C4 [ 240, 150 ] = PL(CS(Pr_10(2,3,1,4)[5^12],0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 150 ] = PL(CS(Pr_10(2,3,1,4)[5^12],0)).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {81, 125}, {81, 124}, {82, 124}, {82, 125}, {77, 124}, {78, 124}, {78, 123}, {77, 123}, {41, 121}, {44, 126}, {42, 121}, {41, 125}, {43, 126}, {42, 125}, {10, 122}, {10, 123}, {9, 123}, {9, 122}, {12, 127}, {11, 127}, {1, 121}, {2, 122}, {4, 126}, {1, 122}, {2, 121}, {4, 127}, {3, 127}, {3, 126}, {3, 131}, {57, 185}, {55, 183}, {14, 142}, {100, 228}, {112, 240}, {2, 131}, {62, 191}, {59, 186}, {54, 183}, {14, 143}, {109, 236}, {13, 143}, {61, 191}, {60, 190}, {49, 179}, {97, 227}, {13, 142}, {58, 185}, {55, 180}, {16, 147}, {49, 178}, {16, 148}, {64, 196}, {56, 188}, {45, 169}, {111, 235}, {45, 168}, {59, 190}, {56, 189}, {97, 228}, {104, 237}, {110, 235}, {2, 132}, {60, 186}, {52, 178}, {104, 238}, {3, 132}, {55, 176}, {52, 179}, {100, 227}, {1, 137}, {65, 201}, {64, 200}, {56, 176}, {53, 189}, {5, 141}, {6, 142}, {101, 237}, {111, 231}, {1, 136}, {53, 188}, {110, 231}, {46, 164}, {68, 206}, {107, 225}, {108, 230}, {5, 142}, {66, 201}, {6, 141}, {11, 128}, {47, 164}, {101, 238}, {105, 226}, {106, 225}, {4, 136}, {65, 205}, {57, 181}, {56, 180}, {12, 128}, {47, 163}, {82, 222}, {4, 137}, {67, 206}, {46, 163}, {83, 222}, {54, 184}, {83, 221}, {102, 232}, {103, 233}, {108, 226}, {55, 184}, {66, 205}, {58, 181}, {82, 221}, {96, 239}, {102, 233}, {103, 232}, {105, 230}, {7, 151}, {116, 228}, {72, 216}, {71, 215}, {64, 208}, {49, 161}, {96, 240}, {6, 151}, {116, 229}, {70, 215}, {67, 210}, {64, 209}, {52, 166}, {114, 224}, {50, 161}, {115, 224}, {7, 147}, {113, 229}, {72, 220}, {71, 211}, {66, 214}, {8, 156}, {49, 165}, {7, 146}, {113, 228}, {70, 211}, {67, 214}, {8, 157}, {51, 166}, {67, 213}, {120, 238}, {68, 210}, {50, 165}, {120, 239}, {66, 213}, {5, 157}, {48, 168}, {5, 156}, {69, 220}, {54, 175}, {48, 169}, {51, 170}, {8, 146}, {117, 239}, {65, 219}, {53, 175}, {8, 147}, {117, 238}, {65, 218}, {15, 148}, {15, 147}, {118, 234}, {50, 174}, {112, 236}, {51, 174}, {119, 234}, {69, 216}, {54, 171}, {109, 240}, {6, 152}, {119, 233}, {68, 218}, {53, 171}, {51, 173}, {52, 170}, {7, 152}, {118, 233}, {68, 219}, {50, 173}, {16, 176}, {27, 187}, {28, 188}, {45, 141}, {103, 199}, {104, 200}, {16, 177}, {14, 172}, {48, 146}, {15, 172}, {46, 141}, {15, 171}, {18, 182}, {33, 133}, {43, 143}, {102, 194}, {105, 205}, {14, 171}, {19, 182}, {23, 178}, {33, 132}, {42, 143}, {102, 195}, {105, 204}, {19, 181}, {23, 177}, {34, 132}, {48, 150}, {101, 195}, {106, 204}, {18, 181}, {27, 188}, {28, 187}, {34, 133}, {101, 194}, {106, 205}, {10, 162}, {23, 191}, {11, 162}, {22, 191}, {24, 177}, {35, 138}, {43, 130}, {11, 161}, {12, 166}, {17, 187}, {24, 178}, {35, 137}, {10, 161}, {12, 167}, {17, 186}, {112, 219}, {26, 182}, {115, 223}, {112, 220}, {26, 183}, {114, 223}, {36, 137}, {93, 240}, {9, 167}, {20, 186}, {25, 183}, {36, 138}, {44, 130}, {9, 166}, {20, 187}, {25, 182}, {103, 200}, {104, 199}, {18, 162}, {87, 231}, {18, 163}, {86, 231}, {17, 163}, {81, 227}, {93, 239}, {17, 162}, {20, 167}, {81, 226}, {111, 220}, {19, 167}, {88, 236}, {94, 234}, {95, 235}, {111, 219}, {40, 157}, {88, 237}, {94, 235}, {95, 234}, {40, 158}, {84, 226}, {107, 221}, {84, 227}, {106, 221}, {21, 173}, {44, 148}, {85, 237}, {110, 214}, {21, 172}, {39, 158}, {44, 149}, {47, 150}, {85, 236}, {92, 229}, {107, 210}, {110, 215}, {22, 172}, {39, 157}, {42, 144}, {90, 224}, {91, 225}, {92, 230}, {107, 209}, {109, 215}, {19, 168}, {22, 173}, {43, 144}, {90, 225}, {91, 224}, {109, 214}, {13, 177}, {20, 168}, {37, 153}, {41, 149}, {45, 145}, {89, 229}, {98, 222}, {99, 223}, {13, 176}, {37, 152}, {41, 148}, {47, 146}, {98, 223}, {99, 222}, {108, 209}, {38, 152}, {86, 232}, {108, 210}, {38, 153}, {46, 145}, {87, 232}, {89, 230}, {72, 136}, {75, 139}, {70, 135}, {75, 138}, {87, 150}, {69, 135}, {87, 149}, {29, 217}, {72, 140}, {85, 145}, {29, 216}, {70, 131}, {85, 144}, {69, 131}, {76, 138}, {86, 144}, {76, 139}, {86, 145}, {30, 212}, {31, 212}, {71, 140}, {31, 211}, {74, 134}, {73, 133}, {30, 211}, {88, 149}, {79, 129}, {80, 158}, {88, 150}, {71, 136}, {74, 133}, {73, 134}, {79, 128}, {80, 159}, {21, 197}, {75, 155}, {26, 202}, {76, 156}, {80, 128}, {21, 196}, {74, 155}, {27, 202}, {80, 129}, {83, 130}, {27, 201}, {28, 206}, {77, 159}, {83, 129}, {26, 201}, {28, 207}, {77, 158}, {96, 179}, {78, 154}, {96, 180}, {73, 156}, {79, 154}, {84, 129}, {22, 192}, {25, 207}, {79, 153}, {84, 130}, {23, 192}, {119, 160}, {25, 206}, {78, 153}, {97, 185}, {120, 160}, {31, 198}, {97, 184}, {100, 189}, {31, 197}, {98, 184}, {100, 190}, {98, 185}, {24, 196}, {75, 151}, {29, 193}, {24, 197}, {74, 151}, {29, 192}, {99, 190}, {30, 192}, {99, 189}, {30, 193}, {32, 197}, {32, 198}, {120, 159}, {34, 202}, {119, 159}, {35, 203}, {34, 203}, {73, 160}, {35, 202}, {36, 207}, {95, 180}, {61, 209}, {118, 154}, {76, 160}, {95, 179}, {61, 208}, {118, 155}, {33, 207}, {117, 155}, {117, 154}, {94, 174}, {33, 208}, {40, 217}, {91, 170}, {94, 175}, {38, 212}, {62, 204}, {39, 213}, {40, 218}, {91, 169}, {93, 175}, {38, 213}, {63, 204}, {39, 212}, {93, 174}, {36, 208}, {114, 134}, {63, 203}, {62, 203}, {114, 135}, {92, 169}, {92, 170}, {113, 135}, {63, 200}, {113, 134}, {32, 216}, {116, 140}, {115, 139}, {58, 194}, {32, 217}, {59, 194}, {59, 193}, {60, 198}, {58, 193}, {63, 196}, {60, 199}, {37, 217}, {89, 165}, {62, 195}, {89, 164}, {57, 199}, {61, 195}, {90, 164}, {37, 218}, {116, 139}, {115, 140}, {57, 198}, {90, 165} }>;

(II) A more general form is to represent the graph as the orbit of {81, 125} under the group generated by the following permutations:

a: (25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(61, 62)(63, 64)(65, 67)(66, 68)(69, 70)(71, 72)(105, 108)(106, 107)(109, 112)(110, 111)(201, 206)(202, 207)(203, 208)(204, 209)(205, 210)(211, 216)(212, 217)(213, 218)(214, 219)(215, 220)
b: (1, 2)(3, 4)(5, 6)(7, 8)(33, 36)(34, 35)(37, 40)(38, 39)(69, 72)(70, 71)(73, 75)(74, 76)(77, 78)(79, 80)(113, 116)(114, 115)(117, 120)(118, 119)(131, 136)(132, 137)(133, 138)(134, 139)(135, 140)(151, 156)(152, 157)(153, 158)(154, 159)(155, 160)
c: (17, 18)(19, 20)(25, 28)(26, 27)(53, 54)(55, 56)(57, 60)(58, 59)(81, 82)(83, 84)(89, 90)(91, 92)(97, 99)(98, 100)(105, 106)(107, 108)(113, 114)(115, 116)(181, 186)(182, 187)(183, 188)(184, 189)(185, 190)(221, 226)(222, 227)(223, 228)(224, 229)(225, 230)
d: (81, 82)(83, 84)(89, 90)(91, 92)(97, 98)(99, 100)(105, 106)(107, 108)(113, 114)(115, 116)(221, 226)(222, 227)(223, 228)(224, 229)(225, 230)
e: (85, 86)(87, 88)(93, 94)(95, 96)(101, 102)(103, 104)(109, 110)(111, 112)(117, 118)(119, 120)(231, 236)(232, 237)(233, 238)(234, 239)(235, 240)
f: (5, 6)(7, 8)(37, 40)(38, 39)(73, 74)(75, 76)(77, 78)(79, 80)(117, 120)(118, 119)(151, 156)(152, 157)(153, 158)(154, 159)(155, 160)
g: (2, 4)(5, 106)(6, 105)(7, 108)(8, 107)(9, 72)(10, 71)(11, 70)(12, 69)(13, 63)(14, 62)(15, 61)(16, 64)(17, 110, 18, 109)(19, 112, 20, 111)(21, 23)(25, 88, 28, 87)(26, 85, 27, 86)(29, 51)(30, 50)(31, 49)(32, 52)(33, 44)(34, 43)(35, 42)(36, 41)(37, 92)(38, 89)(39, 90)(40, 91)(45, 65)(46, 66)(47, 67)(48, 68)(53, 102, 54, 101)(55, 104, 56, 103)(57, 96, 60, 95)(58, 93, 59, 94)(73, 83)(74, 84)(75, 81)(76, 82)(77, 115)(78, 116)(79, 113)(80, 114)(97, 117, 100, 118)(98, 120, 99, 119)(121, 137)(122, 136)(123, 140)(124, 139)(125, 138)(126, 132)(127, 131)(128, 135)(129, 134)(130, 133)(141, 205)(142, 204)(143, 203)(144, 202)(145, 201)(146, 210)(147, 209)(148, 208)(149, 207)(150, 206)(151, 226)(152, 230)(153, 229)(154, 228)(155, 227)(156, 221)(157, 225)(158, 224)(159, 223)(160, 222)(161, 211)(162, 215)(163, 214)(164, 213)(165, 212)(166, 216)(167, 220)(168, 219)(169, 218)(170, 217)(171, 195)(172, 191)(173, 192)(174, 193)(175, 194)(176, 200)(177, 196)(178, 197)(179, 198)(180, 199)(181, 240, 186, 235)(182, 236, 187, 231)(183, 237, 188, 232)(184, 238, 189, 233)(185, 239, 190, 234)
h: (2, 4)(5, 37)(6, 40)(7, 39)(8, 38)(9, 35)(10, 36)(11, 33)(12, 34)(13, 32)(14, 29)(15, 30)(16, 31)(17, 28)(18, 25)(19, 26)(20, 27)(21, 23)(41, 71)(42, 72)(43, 69)(44, 70)(45, 65)(46, 68)(47, 67)(48, 66)(49, 64)(50, 61)(51, 62)(52, 63)(53, 59)(54, 58)(55, 57)(56, 60)(73, 79)(74, 80)(75, 77)(76, 78)(81, 116)(82, 115)(83, 114)(84, 113)(85, 112)(86, 111)(87, 110)(88, 109)(89, 108)(90, 107)(91, 106)(92, 105)(93, 101)(94, 102)(95, 103)(96, 104)(117, 120)(118, 119)(121, 136)(122, 137)(123, 138)(124, 139)(125, 140)(126, 131)(127, 132)(128, 133)(129, 134)(130, 135)(141, 218)(142, 217)(143, 216)(144, 220)(145, 219)(146, 213)(147, 212)(148, 211)(149, 215)(150, 214)(151, 158)(152, 157)(153, 156)(154, 160)(155, 159)(161, 208)(162, 207)(163, 206)(164, 210)(165, 209)(166, 203)(167, 202)(168, 201)(169, 205)(170, 204)(171, 193)(172, 192)(173, 191)(174, 195)(175, 194)(176, 198)(177, 197)(178, 196)(179, 200)(180, 199)(181, 183)(184, 185)(186, 188)(189, 190)(221, 224)(222, 223)(226, 229)(227, 228)(232, 235)(233, 234)(237, 240)(238, 239)
m: (21, 22)(23, 24)(29, 32)(30, 31)(57, 58)(59, 60)(61, 64)(62, 63)(85, 86)(87, 88)(93, 94)(95, 96)(101, 103)(102, 104)(109, 110)(111, 112)(117, 118)(119, 120)(191, 196)(192, 197)(193, 198)(194, 199)(195, 200)(231, 236)(232, 237)(233, 238)(234, 239)(235, 240)
n1: (5, 8)(6, 7)(9, 10)(11, 12)(13, 16)(14, 15)(17, 20)(18, 19)(41, 42)(43, 44)(45, 47)(46, 48)(49, 52)(50, 51)(85, 88)(86, 87)(89, 92)(90, 91)(141, 146)(142, 147)(143, 148)(144, 149)(145, 150)(161, 166)(162, 167)(163, 168)(164, 169)(165, 170)
a1: (29, 30)(31, 32)(37, 38)(39, 40)(65, 66)(67, 68)(69, 70)(71, 72)(109, 112)(110, 111)(211, 216)(212, 217)(213, 218)(214, 219)(215, 220)
b1: (9, 10)(11, 12)(17, 20)(18, 19)(45, 46)(47, 48)(49, 52)(50, 51)(89, 92)(90, 91)(161, 166)(162, 167)(163, 168)(164, 169)(165, 170)
c1: (13, 14)(15, 16)(21, 24)(22, 23)(49, 50)(51, 52)(53, 56)(54, 55)(93, 96)(94, 95)(171, 176)(172, 177)(173, 178)(174, 179)(175, 180)
d1: (1, 5, 3, 7)(2, 8, 4, 6)(9, 40, 11, 38)(10, 39, 12, 37)(13, 33, 15, 35)(14, 34, 16, 36)(17, 31, 20, 32)(18, 30, 19, 29)(21, 27, 24, 28)(22, 26, 23, 25)(41, 76, 43, 74)(42, 73, 44, 75)(45, 69, 47, 71)(46, 70, 48, 72)(49, 67, 51, 65)(50, 66, 52, 68)(53, 63, 56, 64)(54, 62, 55, 61)(57, 59)(77, 80, 79, 78)(81, 120, 84, 117)(82, 119, 83, 118)(85, 113, 88, 116)(86, 114, 87, 115)(89, 109, 92, 112)(90, 110, 91, 111)(93, 105, 96, 108)(94, 106, 95, 107)(97, 101)(98, 102)(99, 103)(100, 104)(121, 156, 126, 151)(122, 157, 127, 152)(123, 158, 128, 153)(124, 159, 129, 154)(125, 160, 130, 155)(131, 146, 136, 141)(132, 147, 137, 142)(133, 148, 138, 143)(134, 149, 139, 144)(135, 150, 140, 145)(161, 213, 166, 218)(162, 212, 167, 217)(163, 211, 168, 216)(164, 215, 169, 220)(165, 214, 170, 219)(171, 203, 176, 208)(172, 202, 177, 207)(173, 201, 178, 206)(174, 205, 179, 210)(175, 204, 180, 209)(181, 193)(182, 192)(183, 191)(184, 195)(185, 194)(186, 198)(187, 197)(188, 196)(189, 200)(190, 199)(221, 234)(222, 233)(223, 232)(224, 231)(225, 235)(226, 239)(227, 238)(228, 237)(229, 236)(230, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 150 ]
240
-1 121 122 136 137
-2 121 132 122 131
-3 132 126 127 131
-4 136 126 137 127
-5 156 157 141 142
-6 151 141 152 142
-7 146 147 151 152
-8 156 146 157 147
-9 122 166 123 167
-10 122 123 161 162
-11 127 128 161 162
-12 166 167 127 128
-13 143 176 177 142
-14 143 171 172 142
-15 147 148 171 172
-16 176 177 147 148
-17 187 162 163 186
-18 181 182 162 163
-19 167 168 181 182
-20 187 167 168 186
-21 172 173 196 197
-22 191 192 172 173
-23 177 178 191 192
-24 177 178 196 197
-25 182 183 206 207
-26 201 202 182 183
-27 187 188 201 202
-28 187 188 206 207
-29 192 193 216 217
-30 211 212 192 193
-31 198 211 212 197
-32 198 216 217 197
-33 132 133 207 208
-34 132 133 202 203
-35 202 137 203 138
-36 137 138 207 208
-37 217 152 218 153
-38 212 213 152 153
-39 157 212 158 213
-40 157 158 217 218
-41 121 125 148 149
-42 121 143 144 125
-43 143 144 126 130
-44 126 148 149 130
-45 145 168 169 141
-46 145 141 163 164
-47 146 150 163 164
-48 146 168 169 150
-49 165 178 179 161
-50 165 161 173 174
-51 166 170 173 174
-52 166 178 179 170
-53 188 189 171 175
-54 171 183 184 175
-55 176 180 183 184
-56 176 188 189 180
-57 198 199 181 185
-58 181 193 194 185
-59 190 193 194 186
-60 198 199 190 186
-61 209 191 195 208
-62 191 203 204 195
-63 200 203 204 196
-64 209 200 196 208
-65 201 205 218 219
-66 201 213 214 205
-67 210 213 214 206
-68 210 206 218 219
-69 220 135 216 131
-70 211 135 215 131
-71 211 136 215 140
-72 220 136 216 140
-73 133 134 156 160
-74 133 155 134 151
-75 155 138 139 151
-76 156 138 160 139
-77 123 124 158 159
-78 154 123 124 153
-79 154 128 129 153
-80 158 159 128 129
-81 124 125 226 227
-82 221 222 124 125
-83 221 222 129 130
-84 226 227 129 130
-85 144 145 236 237
-86 231 144 232 145
-87 231 232 149 150
-88 236 149 237 150
-89 165 229 164 230
-90 165 224 225 164
-91 169 224 170 225
-92 169 170 229 230
-93 239 174 240 175
-94 234 235 174 175
-95 179 234 180 235
-96 179 180 239 240
-97 227 184 228 185
-98 222 223 184 185
-99 189 222 190 223
-100 189 190 227 228
-101 237 194 238 195
-102 232 233 194 195
-103 199 232 200 233
-104 199 200 237 238
-105 204 226 205 230
-106 221 225 204 205
-107 209 210 221 225
-108 209 210 226 230
-109 214 236 215 240
-110 231 235 214 215
-111 220 231 235 219
-112 220 236 240 219
-113 134 135 228 229
-114 134 135 223 224
-115 223 224 139 140
-116 139 140 228 229
-117 154 155 238 239
-118 154 155 233 234
-119 233 234 159 160
-120 159 160 238 239
-121 1 2 41 42
-122 1 2 9 10
-123 77 78 9 10
-124 77 78 81 82
-125 81 82 41 42
-126 44 3 4 43
-127 11 12 3 4
-128 11 12 79 80
-129 79 80 83 84
-130 44 83 84 43
-131 2 3 69 70
-132 33 34 2 3
-133 33 34 73 74
-134 113 114 73 74
-135 69 113 70 114
-136 1 4 71 72
-137 1 35 36 4
-138 35 36 75 76
-139 115 116 75 76
-140 71 115 72 116
-141 45 46 5 6
-142 13 14 5 6
-143 13 14 42 43
-144 85 42 86 43
-145 45 46 85 86
-146 47 48 7 8
-147 15 16 7 8
-148 44 15 16 41
-149 44 88 41 87
-150 88 47 48 87
-151 6 7 74 75
-152 37 38 6 7
-153 78 79 37 38
-154 78 79 117 118
-155 117 74 118 75
-156 5 73 8 76
-157 5 39 40 8
-158 77 80 39 40
-159 77 80 119 120
-160 73 119 76 120
-161 11 49 50 10
-162 11 17 18 10
-163 46 47 17 18
-164 89 46 90 47
-165 89 90 49 50
-166 12 51 52 9
-167 12 19 9 20
-168 45 48 19 20
-169 45 91 48 92
-170 91 92 51 52
-171 14 15 53 54
-172 22 14 15 21
-173 22 50 51 21
-174 93 50 94 51
-175 93 94 53 54
-176 55 56 13 16
-177 23 13 24 16
-178 23 24 49 52
-179 49 95 52 96
-180 55 56 95 96
-181 57 58 18 19
-182 25 26 18 19
-183 55 25 26 54
-184 55 97 54 98
-185 57 58 97 98
-186 59 60 17 20
-187 27 17 28 20
-188 56 27 28 53
-189 99 56 100 53
-190 99 100 59 60
-191 22 23 61 62
-192 22 23 29 30
-193 58 59 29 30
-194 101 58 102 59
-195 101 102 61 62
-196 24 63 64 21
-197 24 31 21 32
-198 57 60 31 32
-199 57 103 60 104
-200 103 104 63 64
-201 66 26 27 65
-202 34 35 26 27
-203 34 35 62 63
-204 105 62 106 63
-205 66 105 106 65
-206 67 68 25 28
-207 33 25 36 28
-208 33 36 61 64
-209 61 107 64 108
-210 67 68 107 108
-211 70 71 30 31
-212 38 39 30 31
-213 66 67 38 39
-214 66 110 67 109
-215 110 70 71 109
-216 69 72 29 32
-217 37 29 40 32
-218 68 37 40 65
-219 111 68 112 65
-220 111 112 69 72
-221 82 83 106 107
-222 99 82 83 98
-223 99 114 115 98
-224 90 91 114 115
-225 90 91 106 107
-226 81 105 84 108
-227 100 81 84 97
-228 100 113 116 97
-229 89 113 92 116
-230 89 92 105 108
-231 110 111 86 87
-232 102 103 86 87
-233 102 103 118 119
-234 94 95 118 119
-235 110 111 94 95
-236 88 112 85 109
-237 88 101 104 85
-238 101 104 117 120
-239 93 117 96 120
-240 112 93 96 109
0

**************