[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 159 ] =
BGCG(UG(ATD[60,15]);K2;{2,3}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {110, 123}, {109, 122}, {99, 123}, {103, 126}, {96, 124}, {102,
121}, {90, 121}, {87, 125}, {85, 122}, {77, 125}, {72, 126}, {68, 124}, {67,
127}, {64, 127}, {49, 121}, {50, 124}, {42, 122}, {43, 127}, {43, 125}, {39,
124}, {34, 127}, {36, 123}, {25, 121}, {30, 122}, {27, 126}, {17, 126}, {12,
125}, {8, 123}, {8, 136}, {67, 195}, {59, 187}, {80, 208}, {105, 233}, {33,
160}, {76, 205}, {87, 214}, {59, 185}, {27, 152}, {65, 194}, {61, 190}, {29,
158}, {4, 128}, {13, 137}, {24, 156}, {31, 155}, {101, 225}, {110, 234}, {75,
206}, {94, 219}, {70, 192}, {82, 212}, {107, 237}, {7, 128}, {60, 187}, {15,
136}, {19, 155}, {65, 201}, {83, 219}, {103, 239}, {55, 190}, {66, 203}, {93,
212}, {96, 233}, {97, 232}, {106, 227}, {37, 175}, {76, 198}, {74, 192}, {56,
179}, {70, 205}, {82, 217}, {93, 214}, {79, 195}, {92, 208}, {4, 137}, {83,
222}, {104, 229}, {105, 228}, {8, 134}, {24, 150}, {42, 164}, {46, 160}, {100,
234}, {49, 190}, {60, 179}, {94, 209}, {1, 145}, {69, 213}, {30, 142}, {115,
227}, {1, 144}, {67, 210}, {35, 178}, {78, 220}, {98, 240}, {2, 145}, {3, 144},
{4, 151}, {35, 183}, {117, 225}, {2, 151}, {64, 213}, {48, 165}, {89, 204},
{114, 231}, {113, 231}, {17, 134}, {60, 171}, {51, 164}, {33, 185}, {117, 237},
{74, 210}, {71, 223}, {52, 173}, {74, 211}, {71, 222}, {61, 164}, {56, 161}, {9,
147}, {63, 165}, {47, 181}, {82, 200}, {25, 130}, {28, 135}, {89, 194}, {18,
142}, {54, 171}, {66, 223}, {81, 204}, {26, 132}, {73, 215}, {80, 206}, {89,
199}, {58, 165}, {12, 172}, {39, 135}, {50, 146}, {53, 149}, {97, 193}, {43,
138}, {45, 140}, {1, 163}, {76, 238}, {20, 182}, {54, 148}, {101, 199}, {17,
178}, {69, 230}, {40, 139}, {49, 146}, {7, 163}, {66, 230}, {21, 177}, {79,
235}, {107, 207}, {110, 202}, {3, 166}, {17, 180}, {39, 130}, {42, 143}, {96,
197}, {30, 184}, {62, 152}, {13, 170}, {19, 180}, {87, 240}, {15, 167}, {74,
226}, {18, 186}, {112, 216}, {5, 172}, {31, 181}, {119, 221}, {23, 188}, {55,
156}, {49, 154}, {111, 196}, {113, 218}, {6, 170}, {62, 146}, {40, 132}, {21,
184}, {70, 235}, {56, 149}, {46, 131}, {48, 157}, {108, 193}, {8, 166}, {118,
216}, {25, 183}, {34, 140}, {107, 197}, {115, 221}, {13, 162}, {61, 146}, {12,
188}, {116, 196}, {63, 143}, {23, 167}, {38, 150}, {14, 191}, {61, 143}, {9,
186}, {26, 169}, {28, 175}, {42, 153}, {44, 159}, {45, 158}, {46, 157}, {92,
239}, {111, 220}, {26, 174}, {57, 141}, {28, 168}, {88, 236}, {90, 238}, {92,
232}, {99, 215}, {101, 209}, {5, 176}, {10, 191}, {11, 189}, {59, 141}, {37,
147}, {40, 159}, {52, 131}, {85, 226}, {44, 148}, {57, 129}, {51, 139}, {84,
236}, {114, 202}, {20, 173}, {60, 133}, {32, 153}, {10, 176}, {18, 168}, {24,
162}, {95, 229}, {26, 161}, {58, 129}, {91, 224}, {98, 217}, {104, 211}, {1,
189}, {21, 169}, {36, 152}, {38, 154}, {11, 182}, {12, 177}, {16, 174}, {52,
138}, {113, 207}, {48, 143}, {58, 133}, {91, 228}, {95, 224}, {101, 218}, {31,
223}, {116, 180}, {87, 151}, {40, 233}, {68, 133}, {47, 238}, {84, 149}, {15,
205}, {37, 231}, {93, 159}, {7, 196}, {78, 141}, {73, 138}, {68, 135}, {3, 199},
{120, 188}, {5, 193}, {10, 206}, {89, 157}, {100, 160}, {22, 211}, {35, 230},
{102, 163}, {92, 154}, {2, 197}, {32, 231}, {45, 234}, {91, 156}, {2, 202}, {77,
133}, {104, 160}, {18, 219}, {38, 239}, {6, 204}, {64, 138}, {23, 221}, {44,
230}, {46, 228}, {108, 166}, {23, 220}, {119, 188}, {41, 226}, {22, 218}, {120,
180}, {75, 135}, {111, 163}, {119, 186}, {27, 213}, {36, 234}, {45, 227}, {115,
189}, {3, 204}, {5, 202}, {15, 192}, {84, 155}, {32, 240}, {118, 166}, {88,
136}, {109, 189}, {22, 199}, {69, 148}, {97, 176}, {4, 214}, {55, 228}, {79,
156}, {85, 129}, {120, 172}, {13, 216}, {16, 197}, {29, 200}, {86, 131}, {94,
139}, {7, 209}, {116, 162}, {11, 221}, {22, 192}, {29, 203}, {19, 196}, {57,
238}, {90, 141}, {64, 152}, {20, 205}, {14, 212}, {20, 207}, {57, 226}, {43,
240}, {50, 233}, {29, 193}, {53, 232}, {107, 182}, {16, 206}, {54, 232}, {21,
203}, {94, 128}, {112, 174}, {114, 172}, {9, 214}, {14, 209}, {73, 169}, {41,
200}, {76, 173}, {68, 165}, {114, 147}, {36, 198}, {99, 129}, {105, 139}, {116,
150}, {6, 229}, {75, 168}, {72, 171}, {52, 215}, {81, 178}, {111, 140}, {53,
208}, {59, 222}, {80, 181}, {6, 224}, {10, 236}, {81, 183}, {37, 194}, {67,
164}, {93, 186}, {95, 184}, {100, 131}, {103, 128}, {113, 150}, {51, 219}, {73,
161}, {83, 187}, {88, 176}, {100, 140}, {115, 155}, {47, 198}, {78, 167}, {70,
175}, {55, 222}, {65, 171}, {11, 224}, {66, 169}, {99, 136}, {9, 229}, {53,
217}, {58, 215}, {82, 191}, {85, 184}, {90, 183}, {91, 182}, {65, 175}, {95,
177}, {103, 137}, {106, 132}, {14, 225}, {32, 207}, {34, 210}, {118, 134}, {41,
217}, {51, 195}, {33, 211}, {71, 181}, {48, 194}, {108, 158}, {24, 235}, {72,
187}, {30, 237}, {27, 239}, {118, 130}, {75, 191}, {63, 203}, {33, 213}, {86,
162}, {105, 157}, {106, 158}, {109, 153}, {112, 132}, {84, 161}, {97, 148},
{106, 159}, {102, 144}, {28, 235}, {117, 130}, {78, 185}, {63, 200}, {62, 201},
{96, 151}, {98, 149}, {25, 225}, {62, 198}, {44, 212}, {71, 190}, {119, 142},
{112, 137}, {72, 178}, {41, 210}, {117, 142}, {56, 195}, {50, 201}, {81, 170},
{83, 168}, {86, 173}, {98, 153}, {104, 147}, {31, 227}, {77, 177}, {69, 185},
{35, 223}, {38, 218}, {79, 179}, {86, 170}, {102, 154}, {108, 144}, {109, 145},
{16, 237}, {34, 220}, {120, 134}, {77, 179}, {80, 174}, {19, 236}, {39, 216},
{47, 208}, {54, 201}, {88, 167}, {110, 145} }>;
(II) A more general form is to represent the graph as the orbit of {110, 123}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 17)(14, 20)(16, 22)(18, 24)(19,
23)(21, 27)(25, 32)(26, 33)(29, 36)(30, 38)(31, 34)(35, 43)(37, 39)(40, 46)(41,
47)(42, 49)(44, 52)(48, 50)(51, 55)(53, 57)(54, 58)(56, 59)(62, 63)(64, 66)(65,
68)(67, 71)(69, 73)(70, 75)(72, 77)(74, 80)(76, 82)(78, 84)(79, 83)(81, 87)(85,
92)(86, 93)(89, 96)(90, 98)(91, 94)(95, 103)(97, 99)(100, 106)(101, 107)(102,
109)(104, 112)(108, 110)(111, 115)(113, 117)(114, 118)(116, 119)(121, 153)(122,
154)(123, 193)(124, 194)(125, 178)(126, 177)(127, 223)(128, 224)(129, 232)(130,
231)(131, 159)(132, 160)(133, 171)(134, 172)(135, 175)(136, 176)(137, 229)(138,
230)(139, 228)(140, 227)(141, 149)(142, 150)(143, 146)(144, 145)(147, 216)(148,
215)(151, 204)(152, 203)(155, 220)(156, 219)(157, 233)(158, 234)(161, 185)(162,
186)(163, 189)(164, 190)(165, 201)(166, 202)(167, 236)(168, 235)(169, 213)(170,
214)(173, 212)(174, 211)(179, 187)(180, 188)(181, 210)(182, 209)(183, 240)(184,
239)(191, 205)(192, 206)(195, 222)(196, 221)(197, 199)(198, 200)(207, 225)(208,
226)(217, 238)(218, 237) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 61)(2, 62)(3, 63)(4, 64)(5, 65)(6, 66)(7, 67)(8, 68)(9, 69)(10, 70)(11,
71)(12, 72)(13, 73)(14, 74)(15, 75)(16, 76)(17, 77)(18, 78)(19, 79)(20, 80)(21,
81)(22, 82)(23, 83)(24, 84)(25, 85)(26, 86)(27, 87)(28, 88)(29, 89)(30, 90)(31,
91)(32, 92)(33, 93)(34, 94)(35, 95)(36, 96)(37, 97)(38, 98)(39, 99)(40, 100)(41,
101)(42, 102)(43, 103)(44, 104)(45, 105)(46, 106)(47, 107)(48, 108)(49, 109)(50,
110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58, 118)(59,
119)(60, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133,
134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149,
150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165,
166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181,
182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197,
198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213,
214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229,
230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)
c: (1, 2)(3, 16)(4, 7)(5, 11)(6, 10)(8, 30)(9, 19)(12, 23)(13, 14)(15, 21)(17,
18)(20, 29)(22, 26)(24, 44)(25, 39)(27, 51)(28, 35)(31, 37)(32, 45)(33, 56)(34,
43)(36, 42)(38, 40)(41, 52)(46, 53)(47, 48)(49, 50)(54, 55)(57, 58)(59, 60)(61,
62)(63, 76)(64, 67)(65, 71)(66, 70)(68, 90)(69, 79)(72, 83)(73, 74)(75, 81)(77,
78)(80, 89)(82, 86)(84, 104)(85, 99)(87, 111)(88, 95)(91, 97)(92, 105)(93,
116)(94, 103)(96, 102)(98, 100)(101, 112)(106, 113)(107, 108)(109, 110)(114,
115)(117, 118)(119, 120)(121, 124)(122, 123)(125, 220)(126, 219)(131, 217)(132,
218)(133, 141)(134, 142)(135, 183)(136, 184)(137, 209)(138, 210)(139, 239)(140,
240)(143, 198)(144, 197)(147, 155)(148, 156)(149, 160)(150, 159)(151, 163)(152,
164)(153, 234)(154, 233)(157, 208)(158, 207)(161, 211)(162, 212)(165, 238)(166,
237)(167, 177)(168, 178)(169, 192)(170, 191)(171, 222)(172, 221)(173, 200)(174,
199)(175, 223)(176, 224)(179, 185)(180, 186)(181, 194)(182, 193)(189, 202)(190,
201)(195, 213)(196, 214)(203, 205)(204, 206)(215, 226)(216, 225)(227, 231)(228,
232)(229, 236)(230, 235)
d: (2, 7)(3, 11)(5, 19)(8, 23)(9, 13)(12, 17)(14, 16)(18, 39)(20, 22)(21,
35)(24, 37)(25, 30)(26, 44)(27, 43)(29, 31)(32, 38)(33, 52)(34, 36)(41, 47)(42,
49)(48, 55)(50, 51)(54, 56)(58, 59)(62, 67)(63, 71)(65, 79)(68, 83)(69, 73)(72,
77)(74, 76)(78, 99)(80, 82)(81, 95)(84, 97)(85, 90)(86, 104)(87, 103)(89,
91)(92, 98)(93, 112)(94, 96)(101, 107)(102, 109)(108, 115)(110, 111)(114,
116)(118, 119)(121, 122)(123, 220)(124, 219)(125, 126)(127, 152)(128, 151)(129,
141)(130, 142)(131, 160)(132, 159)(133, 187)(134, 188)(135, 168)(136, 167)(137,
214)(138, 213)(139, 233)(140, 234)(143, 190)(144, 189)(145, 163)(146, 164)(147,
162)(148, 161)(149, 232)(150, 231)(153, 154)(155, 193)(156, 194)(157, 228)(158,
227)(165, 222)(166, 221)(169, 230)(170, 229)(171, 179)(172, 180)(173, 211)(174,
212)(175, 235)(176, 236)(177, 178)(181, 200)(182, 199)(183, 184)(185, 215)(186,
216)(191, 206)(192, 205)(195, 201)(196, 202)(197, 209)(198, 210)(203, 223)(204,
224)(207, 218)(208, 217)(225, 237)(226, 238)(239, 240)
C4[ 240, 159 ]
240
-1 144 145 189 163
-2 145 202 151 197
-3 144 166 199 204
-4 137 214 128 151
-5 176 202 193 172
-6 224 170 204 229
-7 209 128 163 196
-8 166 123 134 136
-9 147 214 229 186
-10 176 191 236 206
-11 221 189 224 182
-12 177 188 125 172
-13 137 170 216 162
-14 209 212 191 225
-15 167 136 192 205
-16 237 206 174 197
-17 134 178 180 126
-18 168 142 186 219
-19 155 180 236 196
-20 182 205 173 207
-21 177 169 203 184
-22 199 211 192 218
-23 220 188 221 167
-24 156 235 150 162
-25 121 225 183 130
-26 132 169 161 174
-27 213 126 239 152
-28 135 168 235 175
-29 200 158 203 193
-30 122 237 184 142
-31 155 223 181 227
-32 231 207 240 153
-33 211 213 160 185
-34 220 210 127 140
-35 178 223 183 230
-36 198 123 234 152
-37 231 147 194 175
-38 154 150 239 218
-39 124 135 216 130
-40 132 233 159 139
-41 210 200 226 217
-42 143 122 153 164
-43 125 127 138 240
-44 212 148 159 230
-45 234 158 227 140
-46 157 160 228 131
-47 198 181 238 208
-48 143 165 157 194
-49 121 154 146 190
-50 233 124 146 201
-51 139 195 164 219
-52 138 215 173 131
-53 232 149 217 208
-54 232 201 148 171
-55 156 222 190 228
-56 179 149 161 195
-57 226 238 129 141
-58 165 133 215 129
-59 187 222 141 185
-60 187 133 179 171
-61 143 146 190 164
-62 198 146 201 152
-63 143 165 200 203
-64 213 127 138 152
-65 201 171 194 175
-66 223 169 203 230
-67 210 127 195 164
-68 165 133 124 135
-69 213 148 185 230
-70 235 192 205 175
-71 222 190 223 181
-72 187 178 126 171
-73 169 138 215 161
-74 210 211 192 226
-75 135 168 191 206
-76 198 205 238 173
-77 133 177 179 125
-78 220 167 141 185
-79 156 179 235 195
-80 181 206 174 208
-81 178 170 204 183
-82 200 212 191 217
-83 187 222 168 219
-84 155 236 149 161
-85 122 226 129 184
-86 170 162 173 131
-87 125 214 151 240
-88 176 167 136 236
-89 199 157 204 194
-90 121 183 238 141
-91 156 224 182 228
-92 154 232 239 208
-93 212 159 214 186
-94 209 128 139 219
-95 177 224 184 229
-96 233 124 151 197
-97 176 232 148 193
-98 149 217 240 153
-99 123 136 215 129
-100 234 160 140 131
-101 209 199 225 218
-102 121 154 144 163
-103 126 137 128 239
-104 211 147 160 229
-105 233 157 139 228
-106 132 158 159 227
-107 182 237 207 197
-108 144 166 158 193
-109 122 145 189 153
-110 123 145 234 202
-111 220 140 163 196
-112 132 137 216 174
-113 231 150 207 218
-114 231 147 202 172
-115 155 221 189 227
-116 180 150 162 196
-117 225 237 130 142
-118 166 134 216 130
-119 188 221 142 186
-120 188 134 180 172
-121 90 25 102 49
-122 30 85 42 109
-123 99 110 36 8
-124 68 39 50 96
-125 77 12 43 87
-126 103 27 17 72
-127 34 67 64 43
-128 4 103 94 7
-129 99 57 58 85
-130 25 39 117 118
-131 100 46 52 86
-132 112 26 40 106
-133 77 68 58 60
-134 17 8 118 120
-135 68 28 39 75
-136 88 99 15 8
-137 13 112 4 103
-138 73 52 64 43
-139 94 105 40 51
-140 34 111 45 100
-141 78 57 90 59
-142 18 117 30 119
-143 48 61 63 42
-144 1 3 102 108
-145 110 1 2 109
-146 49 50 61 62
-147 37 114 104 9
-148 44 69 97 54
-149 56 84 53 98
-150 24 113 38 116
-151 2 4 96 87
-152 36 27 62 64
-153 42 32 98 109
-154 102 92 38 49
-155 115 84 19 31
-156 55 24 79 91
-157 89 46 48 105
-158 45 29 106 108
-159 44 93 40 106
-160 33 100 46 104
-161 56 26 73 84
-162 13 24 116 86
-163 1 111 102 7
-164 67 61 51 42
-165 68 58 48 63
-166 3 8 118 108
-167 88 23 78 15
-168 28 83 18 75
-169 66 26 73 21
-170 13 81 6 86
-171 60 72 54 65
-172 12 114 5 120
-173 52 20 86 76
-174 112 80 26 16
-175 37 70 28 65
-176 88 5 97 10
-177 77 12 95 21
-178 35 81 17 72
-179 77 56 79 60
-180 17 116 19 120
-181 47 80 71 31
-182 11 91 107 20
-183 35 90 25 81
-184 95 30 85 21
-185 33 78 69 59
-186 93 18 9 119
-187 59 60 72 83
-188 12 23 119 120
-189 11 1 115 109
-190 55 49 71 61
-191 14 82 75 10
-192 22 15 70 74
-193 5 29 97 108
-194 89 37 48 65
-195 56 67 79 51
-196 111 116 7 19
-197 2 16 96 107
-198 36 47 62 76
-199 22 89 101 3
-200 82 29 41 63
-201 50 62 54 65
-202 110 2 114 5
-203 66 29 63 21
-204 89 3 81 6
-205 15 70 20 76
-206 80 16 75 10
-207 113 107 20 32
-208 47 80 92 53
-209 101 14 94 7
-210 34 67 41 74
-211 22 33 104 74
-212 44 14 82 93
-213 33 69 27 64
-214 4 93 9 87
-215 99 58 73 52
-216 13 112 39 118
-217 82 41 53 98
-218 22 101 113 38
-219 83 94 18 51
-220 34 23 111 78
-221 11 23 115 119
-222 55 59 71 83
-223 66 35 71 31
-224 11 91 6 95
-225 101 14 25 117
-226 57 41 74 85
-227 45 115 106 31
-228 55 46 91 105
-229 104 6 95 9
-230 44 66 35 69
-231 113 37 114 32
-232 92 53 97 54
-233 50 105 40 96
-234 110 45 100 36
-235 24 79 70 28
-236 88 84 19 10
-237 16 117 30 107
-238 57 90 47 76
-239 92 103 27 38
-240 87 43 98 32
0