C4graphGraph forms for C4 [ 240, 160 ] = BGCG(UG(ATD[60,16]);K2;{8,9,10,11})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 160 ] = BGCG(UG(ATD[60,16]);K2;{8,9,10,11}).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {105, 121}, {106, 122}, {106, 123}, {107, 121}, {104, 123}, {96, 127}, {91, 126}, {82, 122}, {85, 125}, {86, 127}, {78, 124}, {72, 125}, {71, 124}, {61, 126}, {44, 124}, {46, 124}, {47, 122}, {45, 122}, {46, 121}, {31, 125}, {25, 126}, {18, 123}, {22, 121}, {11, 123}, {12, 126}, {10, 127}, {5, 127}, {1, 125}, {76, 204}, {93, 221}, {3, 130}, {77, 204}, {6, 135}, {16, 145}, {39, 166}, {106, 235}, {10, 136}, {70, 196}, {69, 199}, {56, 186}, {93, 223}, {94, 220}, {5, 134}, {57, 186}, {40, 171}, {51, 176}, {2, 134}, {6, 130}, {54, 179}, {117, 240}, {59, 190}, {103, 226}, {15, 137}, {27, 157}, {89, 223}, {8, 143}, {58, 189}, {20, 147}, {48, 183}, {53, 178}, {86, 209}, {100, 227}, {34, 170}, {67, 203}, {21, 156}, {91, 210}, {104, 225}, {64, 202}, {89, 211}, {18, 153}, {64, 203}, {61, 182}, {100, 239}, {3, 143}, {9, 133}, {11, 135}, {30, 146}, {37, 169}, {41, 165}, {85, 217}, {88, 212}, {92, 208}, {41, 164}, {90, 215}, {32, 174}, {44, 162}, {20, 155}, {35, 172}, {15, 159}, {34, 178}, {96, 240}, {21, 132}, {60, 173}, {54, 167}, {84, 197}, {87, 198}, {15, 157}, {71, 213}, {25, 139}, {36, 182}, {50, 160}, {10, 153}, {68, 215}, {57, 170}, {13, 158}, {29, 142}, {45, 190}, {50, 161}, {53, 166}, {21, 129}, {73, 221}, {82, 199}, {27, 141}, {76, 218}, {28, 138}, {3, 148}, {118, 225}, {75, 220}, {12, 155}, {22, 129}, {95, 200}, {112, 231}, {7, 159}, {120, 224}, {76, 212}, {73, 209}, {37, 189}, {43, 179}, {46, 183}, {115, 234}, {52, 173}, {26, 128}, {116, 238}, {33, 187}, {37, 191}, {51, 169}, {79, 213}, {24, 131}, {36, 191}, {83, 200}, {59, 167}, {41, 180}, {49, 172}, {79, 210}, {80, 205}, {14, 144}, {116, 234}, {68, 218}, {64, 222}, {113, 239}, {17, 142}, {62, 161}, {23, 136}, {35, 188}, {2, 162}, {96, 192}, {102, 198}, {20, 181}, {69, 228}, {43, 138}, {48, 145}, {52, 149}, {97, 192}, {110, 207}, {22, 180}, {74, 232}, {99, 193}, {53, 150}, {65, 226}, {55, 148}, {98, 193}, {36, 128}, {65, 229}, {64, 228}, {39, 131}, {103, 195}, {105, 205}, {19, 182}, {50, 151}, {24, 176}, {48, 152}, {78, 230}, {79, 231}, {17, 184}, {66, 235}, {45, 132}, {66, 232}, {67, 233}, {100, 206}, {8, 163}, {115, 216}, {72, 227}, {59, 151}, {73, 229}, {63, 147}, {60, 144}, {17, 188}, {111, 194}, {23, 185}, {118, 216}, {107, 197}, {63, 144}, {42, 154}, {115, 195}, {9, 184}, {117, 196}, {26, 171}, {30, 175}, {31, 174}, {88, 233}, {92, 237}, {23, 165}, {59, 137}, {26, 168}, {27, 168}, {54, 133}, {38, 149}, {41, 154}, {93, 238}, {94, 237}, {1, 181}, {14, 187}, {35, 150}, {102, 211}, {7, 177}, {21, 163}, {37, 147}, {14, 185}, {47, 152}, {28, 164}, {52, 140}, {99, 219}, {25, 160}, {118, 207}, {38, 156}, {120, 194}, {90, 224}, {48, 139}, {62, 133}, {98, 217}, {109, 214}, {49, 141}, {114, 206}, {12, 177}, {18, 175}, {49, 140}, {102, 219}, {107, 214}, {31, 161}, {116, 202}, {63, 129}, {32, 158}, {44, 146}, {89, 230}, {111, 208}, {77, 141}, {111, 175}, {113, 177}, {9, 200}, {75, 138}, {70, 135}, {65, 128}, {30, 223}, {33, 224}, {92, 157}, {19, 209}, {46, 236}, {16, 211}, {69, 134}, {66, 129}, {25, 218}, {101, 166}, {65, 133}, {80, 148}, {19, 214}, {74, 143}, {53, 240}, {111, 170}, {30, 216}, {70, 128}, {99, 165}, {101, 163}, {109, 171}, {114, 180}, {4, 204}, {118, 190}, {26, 210}, {100, 172}, {3, 202}, {10, 195}, {16, 217}, {29, 212}, {87, 158}, {104, 161}, {43, 225}, {119, 189}, {66, 136}, {81, 155}, {85, 159}, {95, 149}, {1, 202}, {7, 204}, {11, 192}, {36, 239}, {90, 145}, {97, 170}, {33, 237}, {117, 185}, {34, 238}, {40, 228}, {80, 156}, {110, 162}, {4, 201}, {116, 185}, {31, 209}, {32, 238}, {44, 226}, {28, 211}, {71, 136}, {8, 216}, {23, 199}, {82, 130}, {84, 132}, {8, 217}, {61, 236}, {56, 233}, {88, 137}, {62, 236}, {81, 131}, {106, 184}, {13, 222}, {81, 130}, {103, 180}, {15, 219}, {78, 154}, {73, 157}, {72, 156}, {68, 144}, {83, 135}, {89, 141}, {105, 189}, {108, 184}, {113, 165}, {56, 237}, {75, 158}, {96, 181}, {57, 239}, {120, 174}, {101, 179}, {24, 192}, {58, 226}, {40, 240}, {4, 221}, {85, 140}, {87, 142}, {17, 203}, {20, 206}, {114, 168}, {16, 203}, {52, 232}, {117, 169}, {70, 154}, {11, 214}, {22, 200}, {76, 146}, {55, 233}, {24, 198}, {27, 197}, {112, 174}, {2, 221}, {119, 168}, {13, 210}, {97, 190}, {55, 215}, {115, 147}, {68, 164}, {62, 222}, {108, 140}, {6, 231}, {82, 179}, {93, 188}, {50, 208}, {5, 230}, {67, 160}, {60, 223}, {45, 206}, {109, 142}, {5, 225}, {35, 199}, {38, 194}, {49, 213}, {95, 187}, {113, 149}, {39, 194}, {40, 205}, {80, 182}, {109, 139}, {112, 150}, {4, 227}, {99, 132}, {12, 228}, {2, 235}, {14, 231}, {47, 198}, {83, 186}, {1, 235}, {58, 208}, {6, 236}, {9, 227}, {90, 176}, {105, 131}, {13, 230}, {75, 160}, {84, 191}, {7, 234}, {58, 215}, {103, 137}, {32, 207}, {119, 152}, {42, 197}, {43, 196}, {94, 177}, {74, 186}, {87, 167}, {56, 201}, {67, 178}, {86, 167}, {92, 173}, {110, 159}, {51, 193}, {69, 183}, {55, 196}, {61, 201}, {95, 171}, {98, 150}, {114, 134}, {81, 164}, {83, 166}, {97, 148}, {28, 234}, {77, 187}, {74, 188}, {63, 201}, {42, 220}, {91, 173}, {110, 152}, {18, 229}, {120, 143}, {94, 169}, {29, 229}, {71, 191}, {34, 219}, {91, 162}, {98, 155}, {104, 145}, {47, 213}, {77, 183}, {72, 178}, {57, 195}, {79, 181}, {86, 172}, {19, 232}, {54, 205}, {39, 220}, {84, 175}, {88, 163}, {108, 151}, {112, 139}, {38, 218}, {51, 207}, {101, 153}, {107, 151}, {29, 224}, {119, 138}, {60, 193}, {42, 212}, {78, 176}, {108, 146}, {33, 222}, {102, 153} }>;

(II) A more general form is to represent the graph as the orbit of {105, 121} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 23)(18, 28)(20, 31)(22, 33)(25, 36)(26, 38)(27, 39)(29, 41)(30, 43)(32, 45)(34, 47)(37, 50)(40, 52)(44, 55)(46, 56)(48, 57)(49, 53)(51, 59)(54, 60)(62, 63)(64, 66)(65, 68)(67, 71)(69, 74)(70, 76)(72, 79)(73, 81)(75, 84)(77, 83)(78, 88)(80, 91)(82, 93)(85, 96)(86, 98)(87, 99)(89, 101)(90, 103)(92, 105)(94, 107)(97, 110)(100, 112)(104, 115)(106, 116)(108, 117)(109, 113)(111, 119)(114, 120)(121, 237)(122, 238)(123, 234)(124, 233)(125, 181)(126, 182)(127, 217)(128, 218)(129, 222)(130, 221)(131, 157)(132, 158)(133, 144)(134, 143)(135, 204)(136, 203)(137, 176)(138, 175)(139, 239)(140, 240)(141, 166)(142, 165)(145, 195)(146, 196)(147, 161)(148, 162)(149, 171)(150, 172)(151, 169)(152, 170)(153, 211)(154, 212)(155, 209)(156, 210)(159, 192)(160, 191)(163, 230)(164, 229)(167, 193)(168, 194)(173, 205)(174, 206)(177, 214)(178, 213)(179, 223)(180, 224)(183, 186)(184, 185)(187, 200)(188, 199)(189, 208)(190, 207)(197, 220)(198, 219)(201, 236)(202, 235)(215, 226)(216, 225)(227, 231)(228, 232)
b: (1, 61)(2, 62)(3, 63)(4, 64)(5, 65)(6, 66)(7, 67)(8, 68)(9, 69)(10, 70)(11, 71)(12, 72)(13, 73)(14, 74)(15, 75)(16, 76)(17, 77)(18, 78)(19, 79)(20, 80)(21, 81)(22, 82)(23, 83)(24, 84)(25, 85)(26, 86)(27, 87)(28, 88)(29, 89)(30, 90)(31, 91)(32, 92)(33, 93)(34, 94)(35, 95)(36, 96)(37, 97)(38, 98)(39, 99)(40, 100)(41, 101)(42, 102)(43, 103)(44, 104)(45, 105)(46, 106)(47, 107)(48, 108)(49, 109)(50, 110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58, 118)(59, 119)(60, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)
c: (2, 20)(3, 31)(4, 12)(5, 45)(6, 19)(8, 32)(9, 40)(10, 47)(13, 21)(14, 52)(15, 28)(16, 34)(17, 53)(18, 24)(22, 26)(23, 49)(25, 56)(27, 41)(29, 39)(30, 51)(33, 38)(36, 46)(37, 44)(43, 59)(48, 57)(50, 55)(62, 80)(63, 91)(64, 72)(65, 105)(66, 79)(68, 92)(69, 100)(70, 107)(73, 81)(74, 112)(75, 88)(76, 94)(77, 113)(78, 84)(82, 86)(83, 109)(85, 116)(87, 101)(89, 99)(90, 111)(93, 98)(96, 106)(97, 104)(103, 119)(108, 117)(110, 115)(121, 128)(122, 127)(123, 192)(124, 191)(125, 202)(126, 201)(129, 210)(130, 209)(131, 229)(132, 230)(133, 205)(134, 206)(135, 214)(136, 213)(137, 138)(139, 186)(140, 185)(141, 165)(142, 166)(143, 174)(144, 173)(145, 170)(146, 169)(147, 162)(148, 161)(149, 187)(150, 188)(151, 196)(152, 195)(153, 198)(154, 197)(155, 221)(156, 222)(157, 164)(158, 163)(159, 234)(160, 233)(167, 179)(168, 180)(171, 200)(172, 199)(175, 176)(177, 204)(178, 203)(181, 235)(182, 236)(183, 239)(184, 240)(189, 226)(190, 225)(193, 223)(194, 224)(207, 216)(208, 215)(211, 219)(212, 220)(217, 238)(218, 237)(227, 228)(231, 232)
d: (2, 3)(4, 8)(5, 6)(7, 21)(9, 16)(10, 14)(11, 13)(12, 45)(15, 38)(18, 33)(19, 32)(22, 28)(24, 26)(25, 59)(27, 39)(30, 56)(34, 52)(36, 51)(40, 47)(43, 46)(44, 55)(48, 54)(49, 53)(57, 60)(61, 118)(62, 104)(63, 115)(64, 106)(65, 90)(66, 116)(67, 108)(68, 103)(69, 82)(70, 78)(71, 117)(72, 85)(73, 120)(74, 93)(75, 107)(76, 88)(77, 101)(79, 96)(80, 110)(81, 114)(83, 89)(84, 94)(86, 112)(87, 109)(91, 97)(92, 111)(95, 102)(98, 100)(99, 113)(105, 119)(121, 138)(122, 228)(123, 222)(124, 196)(126, 190)(127, 231)(128, 176)(129, 234)(130, 134)(131, 168)(132, 177)(133, 145)(135, 230)(136, 185)(137, 218)(139, 167)(140, 178)(141, 166)(143, 221)(144, 195)(146, 233)(148, 162)(149, 219)(150, 172)(151, 160)(152, 205)(153, 187)(155, 206)(156, 159)(157, 194)(158, 214)(163, 204)(164, 180)(169, 191)(170, 173)(171, 198)(174, 209)(175, 237)(179, 183)(182, 207)(184, 203)(186, 223)(192, 210)(193, 239)(197, 220)(200, 211)(201, 216)(202, 235)(213, 240)(215, 226)(217, 227)(224, 229)(225, 236)(232, 238)
e: (1, 2, 44, 58, 55, 3)(4, 46, 50, 43, 8, 20)(5, 30, 37, 56, 6, 31)(7, 22, 25, 54, 16, 45)(9, 48, 59, 28, 21, 12)(10, 60, 36, 33, 11, 32)(13, 18, 51, 57, 14, 19)(15, 41, 38, 40, 17, 47)(23, 52, 26, 29, 24, 34)(27, 42, 39, 53, 35, 49)(61, 62, 104, 118, 115, 63)(64, 106, 110, 103, 68, 80)(65, 90, 97, 116, 66, 91)(67, 82, 85, 114, 76, 105)(69, 108, 119, 88, 81, 72)(70, 120, 96, 93, 71, 92)(73, 78, 111, 117, 74, 79)(75, 101, 98, 100, 77, 107)(83, 112, 86, 89, 84, 94)(87, 102, 99, 113, 95, 109)(121, 160, 179, 217, 206, 204)(122, 159, 180, 218, 205, 203)(123, 207, 195, 144, 182, 222)(124, 208, 196, 143, 181, 221)(125, 134, 146, 189, 233, 130)(126, 133, 145, 190, 234, 129)(127, 223, 191, 237, 135, 174)(128, 224, 192, 238, 136, 173)(131, 178, 199, 140, 168, 212)(132, 177, 200, 139, 167, 211)(137, 164, 156, 228, 184, 152)(138, 163, 155, 227, 183, 151)(141, 197, 220, 166, 150, 172)(142, 198, 219, 165, 149, 171)(147, 201, 236, 161, 225, 216)(148, 202, 235, 162, 226, 215)(153, 193, 239, 187, 214, 158)(154, 194, 240, 188, 213, 157)(169, 186, 231, 209, 230, 175)(170, 185, 232, 210, 229, 176)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 160 ]
240
-1 125 202 235 181
-2 221 134 235 162
-3 143 202 148 130
-4 221 201 204 227
-5 134 225 127 230
-6 231 135 236 130
-7 177 234 159 204
-8 143 216 217 163
-9 133 200 227 184
-10 136 127 195 153
-11 123 135 192 214
-12 155 177 126 228
-13 210 222 158 230
-14 187 231 144 185
-15 157 137 159 219
-16 145 211 203 217
-17 188 203 184 142
-18 123 229 153 175
-19 209 232 214 182
-20 155 147 181 206
-21 132 156 129 163
-22 121 200 180 129
-23 165 199 136 185
-24 176 198 192 131
-25 126 160 139 218
-26 210 168 171 128
-27 157 168 141 197
-28 211 234 138 164
-29 212 224 229 142
-30 146 223 216 175
-31 209 125 161 174
-32 158 238 174 207
-33 187 222 224 237
-34 178 170 238 219
-35 188 199 150 172
-36 191 182 128 239
-37 189 147 169 191
-38 156 149 194 218
-39 220 166 194 131
-40 171 205 228 240
-41 154 165 180 164
-42 154 220 212 197
-43 179 225 138 196
-44 124 146 226 162
-45 132 122 190 206
-46 121 124 236 183
-47 198 122 213 152
-48 145 139 183 152
-49 213 172 140 141
-50 160 161 151 208
-51 176 169 193 207
-52 232 149 140 173
-53 166 178 150 240
-54 133 167 179 205
-55 233 148 215 196
-56 233 201 237 186
-57 170 195 239 186
-58 189 215 226 208
-59 167 190 137 151
-60 144 223 193 173
-61 201 126 236 182
-62 133 222 236 161
-63 144 201 147 129
-64 222 202 203 228
-65 133 226 128 229
-66 232 136 235 129
-67 178 233 203 160
-68 144 215 218 164
-69 199 134 183 228
-70 154 135 128 196
-71 124 136 191 213
-72 156 178 125 227
-73 209 221 157 229
-74 143 188 232 186
-75 220 158 138 160
-76 146 212 204 218
-77 187 204 183 141
-78 154 176 124 230
-79 231 210 213 181
-80 156 148 182 205
-81 155 130 131 164
-82 122 199 179 130
-83 166 200 135 186
-84 132 191 175 197
-85 125 159 140 217
-86 209 167 127 172
-87 198 167 158 142
-88 233 212 137 163
-89 211 223 141 230
-90 176 145 224 215
-91 210 126 162 173
-92 157 237 173 208
-93 188 221 223 238
-94 220 177 169 237
-95 187 200 149 171
-96 181 192 127 240
-97 190 148 170 192
-98 155 193 150 217
-99 132 165 193 219
-100 172 227 206 239
-101 166 179 163 153
-102 198 211 153 219
-103 180 137 226 195
-104 123 145 225 161
-105 121 189 205 131
-106 122 123 235 184
-107 121 214 151 197
-108 146 140 151 184
-109 214 171 139 142
-110 159 162 152 207
-111 170 194 175 208
-112 231 139 150 174
-113 165 177 149 239
-114 134 168 180 206
-115 234 147 216 195
-116 234 202 238 185
-117 169 185 196 240
-118 190 225 216 207
-119 189 168 138 152
-120 143 224 194 174
-121 22 46 105 107
-122 45 47 82 106
-123 11 104 18 106
-124 44 78 46 71
-125 1 72 85 31
-126 12 25 91 61
-127 5 96 86 10
-128 36 26 70 65
-129 22 66 63 21
-130 3 81 82 6
-131 24 81 39 105
-132 99 45 84 21
-133 62 9 54 65
-134 2 69 114 5
-135 11 70 6 83
-136 66 23 71 10
-137 88 15 59 103
-138 28 75 119 43
-139 112 25 48 109
-140 49 52 85 108
-141 77 89 27 49
-142 17 29 87 109
-143 3 8 74 120
-144 68 14 60 63
-145 90 48 16 104
-146 44 30 108 76
-147 37 115 63 20
-148 55 3 80 97
-149 113 38 95 52
-150 35 112 53 98
-151 59 50 107 108
-152 110 47 48 119
-153 101 102 18 10
-154 78 70 41 42
-155 12 81 20 98
-156 80 38 72 21
-157 15 92 27 73
-158 13 75 32 87
-159 110 15 7 85
-160 67 25 50 75
-161 104 50 62 31
-162 44 110 2 91
-163 88 101 8 21
-164 68 81 28 41
-165 99 23 113 41
-166 101 39 83 53
-167 59 86 54 87
-168 26 114 27 119
-169 37 94 51 117
-170 34 111 57 97
-171 26 40 95 109
-172 100 35 49 86
-173 91 92 60 52
-174 112 31 32 120
-175 111 18 84 30
-176 78 24 90 51
-177 12 113 94 7
-178 34 67 72 53
-179 101 82 43 54
-180 22 103 114 41
-181 1 79 96 20
-182 36 80 61 19
-183 77 46 69 48
-184 17 106 9 108
-185 23 14 116 117
-186 56 57 83 74
-187 33 77 14 95
-188 35 93 17 74
-189 58 37 105 119
-190 45 59 118 97
-191 36 37 71 84
-192 11 24 96 97
-193 99 60 51 98
-194 111 38 39 120
-195 57 103 115 10
-196 55 70 117 43
-197 27 84 107 42
-198 24 47 102 87
-199 23 35 69 82
-200 22 83 95 9
-201 56 4 61 63
-202 1 3 116 64
-203 67 16 17 64
-204 77 4 7 76
-205 80 105 40 54
-206 45 100 114 20
-207 110 51 118 32
-208 111 58 92 50
-209 73 19 31 86
-210 13 79 91 26
-211 89 102 16 28
-212 88 29 42 76
-213 79 47 49 71
-214 11 19 107 109
-215 55 68 90 58
-216 115 8 30 118
-217 16 8 85 98
-218 68 25 38 76
-219 99 34 102 15
-220 39 94 42 75
-221 2 4 93 73
-222 33 13 62 64
-223 89 60 93 30
-224 33 90 29 120
-225 5 104 118 43
-226 44 58 103 65
-227 100 4 72 9
-228 12 69 40 64
-229 18 29 73 65
-230 78 89 13 5
-231 79 112 14 6
-232 66 19 52 74
-233 55 88 56 67
-234 115 28 116 7
-235 66 1 2 106
-236 46 6 61 62
-237 33 56 92 94
-238 34 93 116 32
-239 100 57 36 113
-240 40 117 96 53
0

**************