[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 163 ] =
SDD(UG(Rmap(120,140){10,4|6}_12)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {22, 127}, {21, 127}, {20, 127}, {18, 126}, {16, 125}, {19, 126},
{17, 126}, {12, 124}, {10, 123}, {13, 124}, {9, 123}, {15, 125}, {8, 123}, {14,
125}, {8, 126}, {11, 124}, {1, 121}, {2, 123}, {5, 124}, {6, 127}, {3, 121}, {1,
122}, {2, 121}, {6, 122}, {4, 121}, {7, 122}, {3, 125}, {5, 122}, {10, 138},
{80, 208}, {78, 207}, {81, 208}, {18, 144}, {77, 207}, {37, 167}, {83, 209},
{84, 214}, {100, 230}, {102, 228}, {108, 238}, {7, 132}, {76, 207}, {16, 147},
{82, 209}, {87, 212}, {96, 227}, {4, 128}, {74, 206}, {12, 136}, {21, 145}, {34,
166}, {92, 216}, {93, 217}, {104, 236}, {107, 239}, {109, 233}, {31, 154}, {75,
206}, {72, 205}, {40, 173}, {86, 211}, {110, 235}, {15, 137}, {30, 152}, {84,
210}, {95, 217}, {25, 158}, {119, 240}, {73, 206}, {85, 210}, {93, 218}, {94,
217}, {97, 230}, {99, 228}, {67, 203}, {43, 162}, {69, 204}, {66, 203}, {58,
179}, {103, 238}, {105, 224}, {9, 131}, {71, 205}, {70, 204}, {64, 202}, {11,
129}, {46, 164}, {111, 229}, {22, 157}, {65, 202}, {107, 224}, {111, 228}, {14,
130}, {64, 204}, {89, 213}, {90, 214}, {91, 215}, {110, 226}, {27, 150}, {80,
221}, {88, 213}, {108, 225}, {88, 214}, {98, 236}, {101, 235}, {19, 156}, {68,
203}, {109, 226}, {23, 135}, {74, 218}, {51, 163}, {55, 167}, {26, 139}, {29,
140}, {52, 165}, {20, 134}, {116, 231}, {17, 133}, {115, 231}, {114, 230}, {113,
229}, {76, 216}, {79, 219}, {54, 163}, {120, 237}, {112, 229}, {120, 238}, {23,
128}, {66, 213}, {24, 143}, {24, 128}, {116, 236}, {60, 164}, {25, 128}, {118,
239}, {27, 129}, {106, 240}, {112, 234}, {26, 129}, {115, 232}, {69, 222}, {59,
160}, {30, 130}, {119, 235}, {118, 234}, {117, 233}, {28, 129}, {117, 232},
{113, 236}, {67, 222}, {31, 130}, {34, 191}, {33, 191}, {73, 215}, {63, 161},
{13, 146}, {114, 237}, {71, 216}, {29, 130}, {32, 191}, {49, 174}, {79, 208},
{30, 190}, {36, 132}, {28, 189}, {31, 190}, {34, 131}, {37, 132}, {81, 240},
{33, 131}, {39, 133}, {44, 142}, {29, 190}, {32, 131}, {38, 133}, {24, 188},
{25, 188}, {50, 151}, {27, 189}, {57, 159}, {26, 189}, {35, 132}, {47, 136},
{18, 186}, {48, 152}, {16, 185}, {65, 232}, {62, 151}, {19, 186}, {46, 135},
{38, 140}, {45, 135}, {90, 240}, {17, 186}, {23, 188}, {44, 135}, {42, 134},
{75, 231}, {61, 145}, {22, 187}, {70, 235}, {68, 233}, {32, 141}, {35, 142},
{40, 133}, {43, 134}, {53, 152}, {56, 149}, {78, 227}, {21, 187}, {20, 187},
{77, 226}, {72, 231}, {41, 134}, {6, 182}, {61, 141}, {60, 140}, {14, 190}, {85,
229}, {86, 230}, {4, 181}, {58, 139}, {7, 182}, {42, 155}, {92, 237}, {8, 186},
{63, 141}, {57, 139}, {5, 182}, {62, 141}, {11, 184}, {39, 148}, {56, 139}, {1,
181}, {12, 184}, {2, 183}, {13, 184}, {95, 234}, {106, 223}, {3, 181}, {9, 191},
{11, 189}, {15, 185}, {82, 228}, {89, 239}, {91, 237}, {104, 222}, {105, 223},
{1, 182}, {59, 140}, {2, 181}, {14, 185}, {4, 188}, {47, 151}, {48, 136}, {100,
220}, {28, 165}, {49, 136}, {87, 238}, {98, 219}, {101, 220}, {3, 185}, {33,
155}, {51, 137}, {96, 218}, {97, 219}, {103, 221}, {45, 150}, {50, 137}, {83,
232}, {102, 221}, {41, 149}, {54, 138}, {5, 184}, {6, 187}, {10, 183}, {36,
153}, {52, 137}, {55, 138}, {9, 183}, {8, 183}, {53, 138}, {94, 225}, {99, 220},
{34, 226}, {89, 153}, {90, 154}, {91, 155}, {92, 156}, {93, 157}, {109, 173},
{40, 233}, {113, 176}, {86, 151}, {88, 153}, {110, 175}, {84, 150}, {88, 154},
{95, 157}, {13, 206}, {119, 180}, {114, 177}, {25, 218}, {85, 150}, {93, 158},
{94, 157}, {99, 160}, {80, 148}, {116, 176}, {100, 160}, {81, 148}, {118, 179},
{101, 160}, {37, 227}, {83, 149}, {103, 161}, {111, 169}, {7, 192}, {82, 149},
{96, 167}, {102, 161}, {111, 168}, {12, 196}, {110, 166}, {27, 210}, {120, 177},
{31, 214}, {106, 163}, {108, 165}, {15, 197}, {120, 178}, {30, 212}, {101, 175},
{104, 162}, {105, 163}, {19, 216}, {68, 143}, {97, 170}, {99, 168}, {109, 166},
{10, 198}, {67, 143}, {66, 143}, {105, 164}, {46, 224}, {64, 142}, {84, 154},
{100, 170}, {102, 168}, {22, 217}, {65, 142}, {87, 152}, {107, 164}, {17, 193},
{76, 156}, {64, 144}, {79, 159}, {73, 155}, {98, 176}, {24, 203}, {23, 195},
{74, 158}, {55, 227}, {29, 200}, {69, 144}, {58, 239}, {52, 225}, {103, 178},
{20, 194}, {71, 145}, {70, 144}, {21, 205}, {119, 175}, {118, 174}, {117, 173},
{115, 171}, {114, 170}, {74, 146}, {104, 176}, {107, 179}, {113, 169}, {72,
145}, {117, 172}, {75, 146}, {112, 169}, {49, 234}, {73, 146}, {71, 156}, {66,
153}, {79, 148}, {60, 224}, {26, 199}, {78, 147}, {18, 204}, {77, 147}, {106,
180}, {108, 178}, {112, 174}, {16, 207}, {116, 171}, {115, 172}, {76, 147}, {75,
171}, {50, 211}, {67, 162}, {53, 212}, {57, 219}, {63, 221}, {35, 192}, {72,
171}, {36, 192}, {48, 212}, {37, 192}, {81, 180}, {87, 178}, {39, 193}, {44,
202}, {38, 193}, {69, 162}, {59, 220}, {42, 194}, {32, 201}, {70, 175}, {68,
173}, {56, 209}, {35, 202}, {40, 193}, {43, 194}, {54, 223}, {78, 167}, {89,
179}, {91, 177}, {41, 194}, {77, 166}, {47, 196}, {51, 223}, {46, 195}, {65,
172}, {62, 211}, {92, 177}, {38, 200}, {45, 195}, {90, 180}, {44, 195}, {54,
198}, {61, 205}, {36, 213}, {52, 197}, {55, 198}, {80, 161}, {95, 174}, {53,
198}, {59, 200}, {48, 196}, {61, 201}, {60, 200}, {43, 222}, {49, 196}, {33,
215}, {63, 201}, {51, 197}, {39, 208}, {62, 201}, {50, 197}, {41, 209}, {82,
168}, {94, 165}, {47, 211}, {85, 169}, {86, 170}, {28, 225}, {58, 199}, {42,
215}, {98, 159}, {57, 199}, {96, 158}, {97, 159}, {45, 210}, {56, 199}, {83,
172} }>;
(II) A more general form is to represent the graph as the orbit of {22, 127}
under the group generated by the following permutations:
a: (153, 213) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (156, 216)
c: (139, 199)
d: (170, 230)
e: (130, 190)
f: (127, 187)
g: (149, 209)
h: (123, 183)
m: (154, 214)
n1: (144, 204)
a1: (133, 193)
b1: (168, 228)
c1: (175, 235)
d1: (161, 221)
e1: (146, 206)
f1: (177, 237)
g1: (1, 2)(3, 4)(5, 8)(6, 9)(7, 10)(11, 17)(12, 18)(13, 19)(14, 23)(15, 24)(16,
25)(20, 32)(21, 33)(22, 34)(26, 39)(27, 38)(28, 40)(29, 45)(30, 44)(31, 46)(35,
53)(36, 54)(37, 55)(41, 63)(42, 61)(43, 62)(47, 69)(48, 64)(49, 70)(50, 67)(51,
66)(52, 68)(56, 80)(57, 79)(58, 81)(59, 85)(60, 84)(65, 87)(71, 73)(72, 91)(74,
76)(75, 92)(77, 93)(78, 96)(82, 102)(83, 103)(86, 104)(88, 105)(89, 106)(90,
107)(94, 109)(95, 110)(97, 98)(99, 111)(100, 113)(101, 112)(108, 117)(114,
116)(115, 120)(118, 119)(122, 123)(124, 126)(125, 128)(127, 131)(129, 133)(130,
135)(132, 138)(134, 141)(136, 144)(137, 143)(139, 148)(140, 150)(142, 152)(145,
155)(146, 156)(147, 158)(149, 161)(151, 162)(153, 163)(154, 164)(157, 166)(160,
169)(165, 173)(170, 176)(171, 177)(172, 178)(174, 175)(179, 180)(182, 183)(184,
186)(185, 188)(187, 191)(189, 193)(190, 195)(192, 198)(194, 201)(196, 204)(197,
203)(199, 208)(200, 210)(202, 212)(205, 215)(206, 216)(207, 218)(209, 221)(211,
222)(213, 223)(214, 224)(217, 226)(220, 229)(225, 233)(230, 236)(231, 237)(232,
238)(234, 235)(239, 240)
h1: (128, 188)
m1: (124, 184)
n2: (136, 196)
a2: (167, 227)
b2: (155, 215)
c2: (2, 5)(3, 6)(4, 7)(8, 11)(9, 12)(10, 13)(14, 20)(15, 21)(16, 22)(17, 26)(18,
27)(19, 28)(23, 35)(24, 36)(25, 37)(29, 41)(30, 42)(31, 43)(32, 47)(33, 48)(34,
49)(38, 56)(39, 57)(40, 58)(45, 64)(46, 65)(50, 61)(51, 72)(52, 71)(53, 73)(54,
75)(55, 74)(59, 82)(60, 83)(63, 86)(67, 88)(68, 89)(69, 84)(70, 85)(76, 94)(77,
95)(78, 93)(80, 97)(81, 98)(87, 91)(90, 104)(92, 108)(100, 102)(101, 111)(103,
114)(105, 115)(106, 116)(107, 117)(109, 118)(110, 112)(113, 119)(121, 122)(123,
124)(125, 127)(126, 129)(128, 132)(130, 134)(131, 136)(133, 139)(135, 142)(137,
145)(138, 146)(140, 149)(141, 151)(143, 153)(144, 150)(147, 157)(148, 159)(152,
155)(154, 162)(156, 165)(158, 167)(160, 168)(161, 170)(163, 171)(164, 172)(166,
174)(169, 175)(173, 179)(176, 180)(177, 178)(181, 182)(183, 184)(185, 187)(186,
189)(188, 192)(190, 194)(191, 196)(193, 199)(195, 202)(197, 205)(198, 206)(200,
209)(201, 211)(203, 213)(204, 210)(207, 217)(208, 219)(212, 215)(214, 222)(216,
225)(218, 227)(220, 228)(221, 230)(223, 231)(224, 232)(226, 234)(229, 235)(233,
239)(236, 240)(237, 238)
d2: (151, 211)
e2: (2, 3)(5, 6)(8, 14)(9, 15)(10, 16)(11, 20)(12, 21)(13, 22)(17, 29)(18,
31)(19, 30)(23, 24)(26, 41)(27, 43)(28, 42)(32, 50)(33, 52)(34, 51)(35, 36)(39,
59)(40, 60)(44, 66)(45, 67)(46, 68)(47, 61)(48, 71)(49, 72)(53, 76)(54, 77)(55,
78)(57, 82)(58, 83)(63, 86)(64, 88)(65, 89)(69, 84)(70, 90)(73, 94)(74, 93)(75,
95)(79, 99)(80, 100)(81, 101)(85, 104)(87, 92)(91, 108)(97, 102)(98, 111)(103,
114)(105, 109)(106, 110)(107, 117)(112, 116)(115, 118)(123, 125)(124, 127)(126,
130)(129, 134)(131, 137)(133, 140)(135, 143)(136, 145)(138, 147)(139, 149)(141,
151)(142, 153)(144, 154)(146, 157)(148, 160)(150, 162)(152, 156)(155, 165)(159,
168)(161, 170)(163, 166)(164, 173)(169, 176)(171, 174)(172, 179)(175, 180)(177,
178)(183, 185)(184, 187)(186, 190)(189, 194)(191, 197)(193, 200)(195, 203)(196,
205)(198, 207)(199, 209)(201, 211)(202, 213)(204, 214)(206, 217)(208, 220)(210,
222)(212, 216)(215, 225)(219, 228)(221, 230)(223, 226)(224, 233)(229, 236)(231,
234)(232, 239)(235, 240)(237, 238)
f2: (122, 182)
g2: (125, 185)
h2: (179, 239)
m2: (148, 208)
n3: (147, 207)
a3: (132, 192)
b3: (178, 238)
c3: (162, 222)
d3: (163, 223)
e3: (142, 202)
f3: (173, 233)
g3: (159, 219)
h3: (126, 186)
m3: (141, 201)
n4: (176, 236)
a4: (157, 217)
b4: (131, 191)
c4: (150, 210)
d4: (138, 198)
e4: (171, 231)
f4: (174, 234)
g4: (143, 203)
h4: (140, 200)
m4: (135, 195)
n5: (166, 226)
a5: (134, 194)
b5: (165, 225)
c5: (164, 224)
d5: (129, 189)
e5: (160, 220)
f5: (121, 181)
g5: (152, 212)
h5: (158, 218)
m5: (145, 205)
n6: (180, 240)
a6: (137, 197)
b6: (172, 232)
C4[ 240, 163 ]
240
-1 121 122 181 182
-2 121 123 181 183
-3 121 125 181 185
-4 121 188 181 128
-5 122 124 182 184
-6 187 122 127 182
-7 132 122 192 182
-8 123 126 183 186
-9 123 191 183 131
-10 198 123 138 183
-11 189 124 129 184
-12 124 136 184 196
-13 124 146 184 206
-14 190 125 130 185
-15 125 137 185 197
-16 125 147 185 207
-17 133 126 193 186
-18 144 126 204 186
-19 156 126 216 186
-20 187 134 127 194
-21 187 145 127 205
-22 187 157 127 217
-23 188 135 128 195
-24 143 188 203 128
-25 188 158 128 218
-26 199 189 139 129
-27 210 189 150 129
-28 165 189 225 129
-29 200 190 140 130
-30 190 212 130 152
-31 154 190 214 130
-32 201 191 141 131
-33 155 191 215 131
-34 166 191 226 131
-35 132 202 192 142
-36 132 213 192 153
-37 132 167 192 227
-38 133 200 193 140
-39 133 148 193 208
-40 133 233 193 173
-41 209 134 149 194
-42 155 134 215 194
-43 134 222 194 162
-44 135 202 195 142
-45 210 135 150 195
-46 135 224 195 164
-47 211 136 151 196
-48 212 136 152 196
-49 234 136 174 196
-50 211 137 151 197
-51 223 137 163 197
-52 165 137 225 197
-53 198 212 138 152
-54 198 223 138 163
-55 198 167 138 227
-56 209 199 149 139
-57 199 159 139 219
-58 199 179 139 239
-59 220 200 160 140
-60 200 224 140 164
-61 145 201 205 141
-62 211 201 151 141
-63 221 201 161 141
-64 144 202 204 142
-65 232 202 172 142
-66 143 213 203 153
-67 143 222 203 162
-68 143 233 203 173
-69 144 222 204 162
-70 144 235 204 175
-71 145 156 205 216
-72 231 145 171 205
-73 155 146 215 206
-74 146 158 206 218
-75 231 146 171 206
-76 156 147 216 207
-77 166 147 226 207
-78 167 147 227 207
-79 148 159 208 219
-80 221 148 161 208
-81 180 148 240 208
-82 209 168 149 228
-83 209 232 149 172
-84 154 210 214 150
-85 210 169 150 229
-86 211 170 151 230
-87 178 212 238 152
-88 154 213 214 153
-89 179 213 239 153
-90 154 180 214 240
-91 155 177 215 237
-92 177 156 237 216
-93 157 158 217 218
-94 165 157 225 217
-95 157 234 217 174
-96 167 158 227 218
-97 159 170 219 230
-98 176 159 236 219
-99 220 168 160 228
-100 220 170 160 230
-101 220 235 160 175
-102 221 168 161 228
-103 221 178 161 238
-104 176 222 236 162
-105 223 224 163 164
-106 223 180 163 240
-107 179 224 239 164
-108 165 178 225 238
-109 166 233 226 173
-110 166 235 226 175
-111 168 169 228 229
-112 234 169 174 229
-113 176 169 236 229
-114 177 170 237 230
-115 231 232 171 172
-116 176 231 236 171
-117 232 233 172 173
-118 179 234 239 174
-119 180 235 240 175
-120 177 178 237 238
-121 1 2 3 4
-122 1 5 6 7
-123 2 8 9 10
-124 11 12 13 5
-125 3 14 15 16
-126 17 18 8 19
-127 22 6 20 21
-128 23 24 25 4
-129 11 26 27 28
-130 14 29 30 31
-131 33 34 9 32
-132 35 36 37 7
-133 38 17 39 40
-134 41 20 42 43
-135 44 23 45 46
-136 12 47 48 49
-137 15 50 51 52
-138 55 53 10 54
-139 56 57 58 26
-140 59 38 60 29
-141 61 62 63 32
-142 44 35 64 65
-143 66 67 24 68
-144 69 70 18 64
-145 71 61 72 21
-146 13 73 74 75
-147 77 78 16 76
-148 79 80 81 39
-149 56 82 83 41
-150 45 27 84 85
-151 47 50 62 86
-152 48 30 53 87
-153 66 88 89 36
-154 88 90 84 31
-155 33 91 73 42
-156 92 71 19 76
-157 22 93 94 95
-158 25 93 74 96
-159 57 79 97 98
-160 99 100 101 59
-161 80 102 103 63
-162 67 69 104 43
-163 105 51 106 54
-164 46 60 105 107
-165 28 94 52 108
-166 77 110 34 109
-167 55 78 37 96
-168 99 111 102 82
-169 111 112 113 85
-170 100 114 86 97
-171 115 72 116 75
-172 115 83 117 65
-173 68 40 117 109
-174 112 49 95 118
-175 110 101 70 119
-176 113 104 116 98
-177 91 92 114 120
-178 103 108 87 120
-179 89 58 107 118
-180 90 81 106 119
-181 1 2 3 4
-182 1 5 6 7
-183 2 8 9 10
-184 11 12 13 5
-185 3 14 15 16
-186 17 18 8 19
-187 22 6 20 21
-188 23 24 25 4
-189 11 26 27 28
-190 14 29 30 31
-191 33 34 9 32
-192 35 36 37 7
-193 38 17 39 40
-194 41 20 42 43
-195 44 23 45 46
-196 12 47 48 49
-197 15 50 51 52
-198 55 53 10 54
-199 56 57 58 26
-200 59 38 60 29
-201 61 62 63 32
-202 44 35 64 65
-203 66 67 24 68
-204 69 70 18 64
-205 71 61 72 21
-206 13 73 74 75
-207 77 78 16 76
-208 79 80 81 39
-209 56 82 83 41
-210 45 27 84 85
-211 47 50 62 86
-212 48 30 53 87
-213 66 88 89 36
-214 88 90 84 31
-215 33 91 73 42
-216 92 71 19 76
-217 22 93 94 95
-218 25 93 74 96
-219 57 79 97 98
-220 99 100 101 59
-221 80 102 103 63
-222 67 69 104 43
-223 105 51 106 54
-224 46 60 105 107
-225 28 94 52 108
-226 77 110 34 109
-227 55 78 37 96
-228 99 111 102 82
-229 111 112 113 85
-230 100 114 86 97
-231 115 72 116 75
-232 115 83 117 65
-233 68 40 117 109
-234 112 49 95 118
-235 110 101 70 119
-236 113 104 116 98
-237 91 92 114 120
-238 103 108 87 120
-239 89 58 107 118
-240 90 81 106 119
0