C4graphGraph forms for C4 [ 240, 164 ] = SDD(MG(Rmap(60,57){4,6|6}_10))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 164 ] = SDD(MG(Rmap(60,57){4,6|6}_10)).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {21, 127}, {20, 127}, {18, 126}, {19, 127}, {16, 126}, {17, 126}, {12, 124}, {10, 123}, {13, 124}, {9, 123}, {15, 125}, {8, 123}, {14, 125}, {8, 125}, {11, 124}, {1, 121}, {5, 125}, {2, 123}, {6, 127}, {3, 121}, {4, 126}, {1, 122}, {2, 121}, {6, 122}, {4, 121}, {7, 122}, {3, 124}, {5, 122}, {89, 217}, {90, 218}, {96, 224}, {84, 213}, {86, 215}, {88, 217}, {91, 218}, {23, 149}, {94, 220}, {15, 140}, {115, 240}, {85, 214}, {95, 220}, {97, 226}, {101, 230}, {108, 239}, {80, 212}, {106, 238}, {109, 233}, {37, 160}, {81, 212}, {104, 237}, {110, 235}, {111, 234}, {7, 129}, {80, 214}, {83, 213}, {93, 219}, {107, 237}, {72, 207}, {119, 240}, {82, 213}, {92, 219}, {98, 229}, {70, 206}, {120, 240}, {71, 207}, {99, 235}, {104, 224}, {105, 225}, {106, 226}, {107, 227}, {14, 135}, {68, 205}, {25, 144}, {103, 238}, {109, 228}, {29, 151}, {43, 161}, {102, 236}, {110, 228}, {111, 229}, {9, 130}, {69, 206}, {64, 203}, {11, 128}, {13, 134}, {100, 239}, {26, 150}, {65, 205}, {28, 145}, {65, 204}, {66, 204}, {10, 133}, {67, 204}, {12, 131}, {82, 221}, {87, 216}, {108, 227}, {16, 128}, {27, 138}, {58, 168}, {49, 162}, {74, 217}, {68, 215}, {31, 139}, {120, 236}, {115, 231}, {114, 231}, {22, 128}, {76, 218}, {112, 230}, {19, 132}, {113, 230}, {23, 128}, {30, 137}, {52, 163}, {25, 129}, {118, 238}, {17, 136}, {116, 237}, {73, 208}, {67, 218}, {61, 164}, {22, 143}, {24, 129}, {27, 130}, {78, 215}, {105, 240}, {112, 233}, {50, 168}, {117, 239}, {114, 232}, {75, 209}, {66, 216}, {21, 142}, {113, 234}, {74, 209}, {71, 220}, {26, 129}, {24, 132}, {119, 235}, {116, 232}, {31, 131}, {79, 211}, {20, 137}, {117, 232}, {30, 131}, {78, 211}, {28, 130}, {55, 169}, {76, 210}, {18, 141}, {118, 233}, {29, 130}, {32, 191}, {77, 210}, {31, 191}, {73, 233}, {72, 232}, {37, 133}, {38, 134}, {30, 191}, {36, 133}, {39, 134}, {77, 236}, {28, 190}, {69, 231}, {63, 157}, {29, 190}, {32, 131}, {25, 189}, {44, 136}, {24, 189}, {27, 190}, {33, 132}, {45, 136}, {51, 150}, {79, 234}, {34, 132}, {75, 237}, {64, 230}, {35, 133}, {46, 136}, {47, 137}, {26, 189}, {53, 146}, {18, 186}, {19, 187}, {35, 138}, {62, 151}, {60, 149}, {16, 186}, {70, 236}, {22, 188}, {48, 154}, {17, 186}, {56, 147}, {23, 188}, {16, 188}, {43, 135}, {38, 139}, {57, 148}, {42, 135}, {21, 187}, {54, 152}, {40, 134}, {41, 135}, {20, 187}, {59, 148}, {6, 182}, {63, 143}, {4, 181}, {62, 143}, {7, 182}, {8, 185}, {46, 156}, {60, 142}, {83, 225}, {89, 235}, {5, 182}, {61, 142}, {11, 184}, {12, 191}, {1, 181}, {57, 141}, {12, 184}, {91, 239}, {2, 183}, {59, 142}, {56, 141}, {13, 184}, {86, 227}, {3, 181}, {15, 185}, {42, 156}, {1, 182}, {58, 141}, {2, 181}, {9, 190}, {11, 188}, {14, 185}, {40, 159}, {85, 226}, {87, 224}, {32, 152}, {33, 153}, {50, 138}, {51, 139}, {95, 231}, {103, 223}, {48, 137}, {53, 140}, {88, 225}, {102, 223}, {7, 189}, {54, 140}, {84, 238}, {100, 222}, {101, 223}, {3, 184}, {55, 140}, {41, 146}, {47, 148}, {49, 138}, {81, 234}, {5, 185}, {39, 155}, {94, 226}, {97, 221}, {98, 222}, {6, 187}, {10, 183}, {34, 159}, {44, 145}, {92, 225}, {96, 221}, {99, 222}, {4, 186}, {9, 183}, {36, 154}, {45, 147}, {93, 227}, {8, 183}, {52, 139}, {90, 229}, {97, 161}, {98, 162}, {109, 173}, {96, 161}, {99, 162}, {110, 175}, {111, 174}, {93, 159}, {92, 159}, {119, 180}, {89, 157}, {118, 178}, {90, 158}, {96, 164}, {103, 163}, {88, 157}, {116, 177}, {91, 158}, {102, 163}, {109, 168}, {23, 209}, {117, 179}, {100, 162}, {101, 163}, {110, 168}, {111, 169}, {15, 200}, {115, 180}, {97, 166}, {26, 210}, {120, 176}, {80, 152}, {81, 152}, {80, 154}, {83, 153}, {10, 193}, {82, 153}, {87, 156}, {98, 169}, {108, 167}, {99, 175}, {120, 180}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {14, 195}, {84, 153}, {86, 155}, {29, 211}, {13, 194}, {64, 143}, {85, 154}, {101, 170}, {65, 145}, {20, 197}, {65, 144}, {28, 205}, {55, 229}, {66, 144}, {76, 158}, {19, 192}, {67, 144}, {70, 146}, {71, 147}, {17, 196}, {68, 145}, {25, 204}, {78, 155}, {103, 178}, {50, 228}, {102, 176}, {69, 146}, {74, 157}, {100, 179}, {24, 192}, {119, 175}, {116, 172}, {115, 171}, {31, 199}, {79, 151}, {106, 178}, {78, 151}, {117, 172}, {114, 171}, {104, 177}, {76, 150}, {107, 177}, {112, 170}, {18, 201}, {118, 173}, {113, 170}, {72, 147}, {30, 197}, {77, 150}, {22, 203}, {73, 148}, {67, 158}, {61, 224}, {27, 198}, {105, 180}, {112, 173}, {58, 228}, {114, 172}, {75, 149}, {66, 156}, {21, 202}, {113, 174}, {74, 149}, {68, 155}, {108, 179}, {33, 192}, {38, 199}, {44, 205}, {51, 210}, {79, 174}, {34, 192}, {54, 212}, {35, 193}, {45, 207}, {37, 193}, {73, 173}, {72, 172}, {38, 194}, {35, 198}, {36, 193}, {39, 194}, {48, 214}, {63, 217}, {84, 178}, {41, 206}, {71, 160}, {43, 195}, {44, 196}, {91, 179}, {42, 195}, {57, 208}, {45, 196}, {40, 194}, {64, 170}, {41, 195}, {46, 196}, {47, 197}, {52, 223}, {59, 208}, {60, 209}, {62, 211}, {69, 171}, {49, 222}, {39, 215}, {57, 201}, {56, 201}, {59, 202}, {86, 167}, {36, 214}, {42, 216}, {40, 219}, {58, 201}, {52, 199}, {82, 161}, {85, 166}, {87, 164}, {90, 169}, {32, 212}, {63, 203}, {33, 213}, {50, 198}, {51, 199}, {95, 171}, {48, 197}, {62, 203}, {43, 221}, {70, 176}, {60, 202}, {46, 216}, {83, 165}, {89, 175}, {49, 198}, {61, 202}, {56, 207}, {94, 166}, {34, 219}, {37, 220}, {92, 165}, {75, 177}, {93, 167}, {53, 206}, {53, 200}, {77, 176}, {88, 165}, {54, 200}, {94, 160}, {47, 208}, {55, 200}, {81, 174}, {95, 160} }>;

(II) A more general form is to represent the graph as the orbit of {21, 127} under the group generated by the following permutations:

a: (153, 213)
b: (156, 216)
c: (139, 199)
d: (170, 230)
e: (130, 190)
f: (127, 187)
g: (149, 209)
h: (123, 183)
m: (154, 214)
n1: (144, 204)
a1: (168, 228)
b1: (133, 193)
c1: (175, 235)
d1: (161, 221)
e1: (146, 206)
f1: (177, 237)
g1: (128, 188)
h1: (124, 184)
m1: (136, 196)
n2: (167, 227)
a2: (155, 215)
b2: (151, 211)
c2: (122, 182)
d2: (2, 5)(3, 6)(4, 7)(9, 14)(10, 15)(11, 19)(12, 20)(13, 21)(16, 24)(17, 25)(18, 26)(22, 33)(23, 34)(27, 41)(28, 42)(29, 43)(31, 47)(32, 48)(35, 53)(36, 54)(37, 55)(38, 59)(39, 61)(40, 60)(44, 66)(45, 67)(46, 65)(49, 69)(50, 70)(51, 57)(52, 73)(56, 76)(58, 77)(62, 82)(63, 83)(64, 84)(68, 87)(71, 90)(72, 91)(74, 92)(75, 93)(78, 96)(79, 97)(81, 85)(86, 104)(89, 105)(94, 111)(95, 98)(99, 115)(100, 114)(101, 118)(102, 109)(103, 112)(106, 113)(108, 116)(110, 120)(121, 122)(123, 125)(124, 127)(126, 129)(128, 132)(130, 135)(131, 137)(133, 140)(134, 142)(136, 144)(138, 146)(139, 148)(141, 150)(143, 153)(145, 156)(147, 158)(149, 159)(151, 161)(152, 154)(155, 164)(157, 165)(160, 169)(162, 171)(163, 173)(166, 174)(167, 177)(168, 176)(170, 178)(172, 179)(175, 180)(181, 182)(183, 185)(184, 187)(186, 189)(188, 192)(190, 195)(191, 197)(193, 200)(194, 202)(196, 204)(198, 206)(199, 208)(201, 210)(203, 213)(205, 216)(207, 218)(209, 219)(211, 221)(212, 214)(215, 224)(217, 225)(220, 229)(222, 231)(223, 233)(226, 234)(227, 237)(228, 236)(230, 238)(232, 239)(235, 240)
e2: (125, 185)
f2: (148, 208)
g2: (179, 239)
h2: (147, 207)
m2: (132, 192)
n3: (178, 238)
a3: (162, 222)
b3: (163, 223)
c3: (142, 202)
d3: (173, 233)
e3: (159, 219)
f3: (126, 186)
g3: (141, 201)
h3: (176, 236)
m3: (157, 217)
n4: (131, 191)
a4: (150, 210)
b4: (138, 198)
c4: (169, 229)
d4: (1, 2)(3, 4)(5, 8)(6, 9)(7, 10)(11, 16)(12, 17)(13, 18)(14, 15)(19, 27)(20, 28)(21, 29)(22, 23)(24, 35)(25, 36)(26, 37)(30, 44)(31, 45)(32, 46)(33, 49)(34, 50)(38, 56)(39, 57)(40, 58)(41, 53)(42, 54)(43, 55)(47, 68)(48, 65)(51, 71)(52, 72)(59, 78)(60, 62)(61, 79)(63, 74)(64, 75)(66, 80)(67, 85)(69, 70)(73, 86)(76, 94)(77, 95)(81, 87)(82, 98)(83, 99)(84, 100)(88, 89)(90, 97)(91, 106)(92, 110)(93, 109)(96, 111)(101, 116)(102, 114)(103, 117)(104, 113)(105, 119)(107, 112)(108, 118)(115, 120)(122, 123)(124, 126)(127, 130)(129, 133)(131, 136)(132, 138)(134, 141)(135, 140)(137, 145)(139, 147)(142, 151)(143, 149)(144, 154)(148, 155)(150, 160)(152, 156)(153, 162)(158, 166)(159, 168)(161, 169)(163, 172)(164, 174)(165, 175)(167, 173)(170, 177)(171, 176)(178, 179)(182, 183)(184, 186)(187, 190)(189, 193)(191, 196)(192, 198)(194, 201)(195, 200)(197, 205)(199, 207)(202, 211)(203, 209)(204, 214)(208, 215)(210, 220)(212, 216)(213, 222)(218, 226)(219, 228)(221, 229)(223, 232)(224, 234)(225, 235)(227, 233)(230, 237)(231, 236)(238, 239)
e4: (140, 200)
f4: (143, 203)
g4: (171, 231)
h4: (174, 234)
m4: (135, 195)
n5: (134, 194)
a5: (165, 225)
b5: (164, 224)
c5: (129, 189)
d5: (160, 220)
e5: (121, 181)
f5: (152, 212)
g5: (158, 218)
h5: (145, 205)
m5: (180, 240)
n6: (1, 3, 12, 30, 20, 6)(2, 11, 31, 48, 21, 7)(4, 13, 32, 47, 19, 5)(8, 16, 38, 80, 59, 24)(9, 22, 52, 85, 61, 25)(10, 23, 51, 36, 60, 26)(14, 17, 39, 81, 73, 33)(15, 18, 40, 54, 57, 34)(27, 63, 102, 94, 104, 67)(28, 62, 101, 106, 96, 66)(29, 64, 103, 97, 87, 65)(35, 74, 77, 37, 75, 76)(41, 45, 86, 111, 109, 83)(42, 44, 78, 113, 118, 82)(43, 46, 68, 79, 112, 84)(49, 89, 120, 95, 116, 91)(50, 88, 70, 71, 107, 90)(53, 56, 93, 55, 58, 92)(69, 72, 108, 98, 110, 105)(99, 119, 115, 114, 117, 100)(121, 124, 131, 137, 127, 122)(123, 128, 139, 154, 142, 129)(125, 126, 134, 152, 148, 132)(130, 143, 163, 166, 164, 144)(133, 149, 150)(135, 136, 155, 174, 173, 153)(138, 157, 176, 160, 177, 158)(140, 141, 159)(145, 151, 170, 178, 161, 156)(146, 147, 167, 169, 168, 165)(162, 175, 180, 171, 172, 179)(181, 184, 191, 197, 187, 182)(183, 188, 199, 214, 202, 189)(185, 186, 194, 212, 208, 192)(190, 203, 223, 226, 224, 204)(193, 209, 210)(195, 196, 215, 234, 233, 213)(198, 217, 236, 220, 237, 218)(200, 201, 219)(205, 211, 230, 238, 221, 216)(206, 207, 227, 229, 228, 225)(222, 235, 240, 231, 232, 239)
a6: (137, 197)
b6: (172, 232)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 164 ]
240
-1 121 122 181 182
-2 121 123 181 183
-3 121 124 181 184
-4 121 126 181 186
-5 122 125 182 185
-6 187 122 127 182
-7 122 189 182 129
-8 123 125 183 185
-9 123 190 183 130
-10 133 123 193 183
-11 188 124 128 184
-12 124 191 184 131
-13 134 124 194 184
-14 135 125 195 185
-15 200 125 140 185
-16 188 126 128 186
-17 136 126 196 186
-18 201 126 141 186
-19 132 187 192 127
-20 187 137 127 197
-21 187 202 127 142
-22 143 188 203 128
-23 209 188 149 128
-24 132 189 192 129
-25 144 189 204 129
-26 210 189 150 129
-27 198 190 138 130
-28 145 190 205 130
-29 211 190 151 130
-30 191 137 131 197
-31 199 191 139 131
-32 212 191 152 131
-33 132 213 192 153
-34 132 159 192 219
-35 198 133 138 193
-36 154 133 214 193
-37 220 133 160 193
-38 199 134 139 194
-39 155 134 215 194
-40 134 159 194 219
-41 135 146 195 206
-42 156 135 216 195
-43 221 135 161 195
-44 145 136 205 196
-45 136 147 196 207
-46 156 136 216 196
-47 137 148 197 208
-48 154 137 214 197
-49 198 222 138 162
-50 198 168 138 228
-51 199 210 139 150
-52 199 223 139 163
-53 200 146 140 206
-54 200 212 140 152
-55 200 169 140 229
-56 201 147 141 207
-57 201 148 141 208
-58 168 201 228 141
-59 202 148 142 208
-60 209 202 149 142
-61 202 224 142 164
-62 143 211 203 151
-63 143 157 203 217
-64 143 170 203 230
-65 144 145 204 205
-66 144 156 204 216
-67 144 158 204 218
-68 155 145 215 205
-69 231 146 171 206
-70 176 146 236 206
-71 220 147 160 207
-72 232 147 172 207
-73 233 148 173 208
-74 209 157 149 217
-75 209 177 149 237
-76 210 158 150 218
-77 176 210 236 150
-78 155 211 215 151
-79 211 234 151 174
-80 154 212 214 152
-81 212 234 152 174
-82 221 213 161 153
-83 165 213 225 153
-84 178 213 238 153
-85 154 166 214 226
-86 155 167 215 227
-87 156 224 216 164
-88 165 157 225 217
-89 157 235 217 175
-90 158 169 218 229
-91 179 158 239 218
-92 165 159 225 219
-93 167 159 227 219
-94 220 166 160 226
-95 220 231 160 171
-96 221 224 161 164
-97 166 221 226 161
-98 222 169 162 229
-99 222 235 162 175
-100 222 179 162 239
-101 223 170 163 230
-102 176 223 236 163
-103 178 223 238 163
-104 177 224 237 164
-105 165 180 225 240
-106 166 178 226 238
-107 177 167 237 227
-108 167 179 227 239
-109 233 168 173 228
-110 168 235 228 175
-111 234 169 174 229
-112 233 170 173 230
-113 234 170 174 230
-114 231 232 171 172
-115 231 180 171 240
-116 177 232 237 172
-117 232 179 172 239
-118 178 233 238 173
-119 180 235 240 175
-120 176 180 236 240
-121 1 2 3 4
-122 1 5 6 7
-123 2 8 9 10
-124 11 12 13 3
-125 14 15 5 8
-126 4 16 17 18
-127 6 19 20 21
-128 11 22 23 16
-129 24 25 26 7
-130 27 28 29 9
-131 12 30 31 32
-132 33 34 24 19
-133 35 36 37 10
-134 13 38 39 40
-135 14 41 42 43
-136 44 45 46 17
-137 47 48 30 20
-138 35 27 49 50
-139 38 51 52 31
-140 55 15 53 54
-141 56 57 58 18
-142 59 60 61 21
-143 22 62 63 64
-144 66 67 25 65
-145 44 68 28 65
-146 69 70 41 53
-147 45 56 71 72
-148 57 47 59 73
-149 23 60 74 75
-150 77 26 51 76
-151 78 79 29 62
-152 80 81 32 54
-153 33 82 83 84
-154 36 80 48 85
-155 78 68 39 86
-156 66 46 42 87
-157 88 89 63 74
-158 67 90 91 76
-159 34 92 93 40
-160 37 71 94 95
-161 82 96 97 43
-162 99 100 49 98
-163 101 102 103 52
-164 104 61 96 87
-165 88 92 83 105
-166 94 106 85 97
-167 93 107 86 108
-168 110 58 50 109
-169 55 111 90 98
-170 101 112 113 64
-171 69 114 115 95
-172 114 72 116 117
-173 112 73 118 109
-174 111 79 113 81
-175 99 110 89 119
-176 77 102 70 120
-177 104 116 107 75
-178 103 84 106 118
-179 100 91 117 108
-180 115 105 119 120
-181 1 2 3 4
-182 1 5 6 7
-183 2 8 9 10
-184 11 12 13 3
-185 14 15 5 8
-186 4 16 17 18
-187 6 19 20 21
-188 11 22 23 16
-189 24 25 26 7
-190 27 28 29 9
-191 12 30 31 32
-192 33 34 24 19
-193 35 36 37 10
-194 13 38 39 40
-195 14 41 42 43
-196 44 45 46 17
-197 47 48 30 20
-198 35 27 49 50
-199 38 51 52 31
-200 55 15 53 54
-201 56 57 58 18
-202 59 60 61 21
-203 22 62 63 64
-204 66 67 25 65
-205 44 68 28 65
-206 69 70 41 53
-207 45 56 71 72
-208 57 47 59 73
-209 23 60 74 75
-210 77 26 51 76
-211 78 79 29 62
-212 80 81 32 54
-213 33 82 83 84
-214 36 80 48 85
-215 78 68 39 86
-216 66 46 42 87
-217 88 89 63 74
-218 67 90 91 76
-219 34 92 93 40
-220 37 71 94 95
-221 82 96 97 43
-222 99 100 49 98
-223 101 102 103 52
-224 104 61 96 87
-225 88 92 83 105
-226 94 106 85 97
-227 93 107 86 108
-228 110 58 50 109
-229 55 111 90 98
-230 101 112 113 64
-231 69 114 115 95
-232 114 72 116 117
-233 112 73 118 109
-234 111 79 113 81
-235 99 110 89 119
-236 77 102 70 120
-237 104 116 107 75
-238 103 84 106 118
-239 100 91 117 108
-240 115 105 119 120
0

**************