[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 165 ] =
BGCG(UG(ATD[120,10]);K1;{16,17}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {114, 127}, {109, 121}, {110, 122}, {102, 121}, {90, 124}, {83,
121}, {81, 122}, {69, 127}, {64, 125}, {58, 123}, {63, 124}, {59, 124}, {62,
121}, {53, 123}, {40, 123}, {42, 125}, {45, 122}, {34, 126}, {32, 125}, {30,
124}, {20, 125}, {20, 126}, {18, 126}, {12, 122}, {13, 123}, {7, 127}, {2, 127},
{3, 126}, {57, 185}, {17, 144}, {69, 196}, {18, 147}, {54, 183}, {21, 151}, {59,
185}, {48, 178}, {99, 225}, {5, 134}, {60, 191}, {106, 233}, {109, 238}, {5,
129}, {25, 156}, {40, 173}, {45, 168}, {87, 210}, {95, 218}, {47, 169}, {12,
139}, {33, 166}, {38, 161}, {100, 227}, {105, 238}, {46, 166}, {64, 200}, {63,
183}, {89, 209}, {97, 233}, {29, 148}, {53, 188}, {18, 152}, {24, 146}, {79,
197}, {101, 239}, {14, 133}, {82, 217}, {83, 216}, {14, 130}, {39, 171}, {46,
162}, {47, 163}, {88, 212}, {28, 145}, {70, 200}, {76, 194}, {8, 135}, {74,
197}, {35, 172}, {43, 164}, {93, 210}, {106, 229}, {34, 178}, {77, 221}, {75,
219}, {74, 218}, {71, 215}, {68, 212}, {87, 199}, {26, 139}, {62, 175}, {3,
145}, {30, 140}, {4, 151}, {67, 208}, {64, 211}, {17, 130}, {51, 160}, {87,
196}, {3, 151}, {84, 192}, {7, 146}, {72, 221}, {15, 154}, {25, 140}, {42, 191},
{45, 184}, {92, 201}, {29, 139}, {46, 184}, {2, 149}, {93, 202}, {10, 146}, {60,
164}, {16, 136}, {50, 170}, {52, 172}, {80, 201}, {92, 197}, {112, 233}, {16,
138}, {74, 208}, {84, 206}, {15, 148}, {64, 219}, {78, 213}, {81, 202}, {91,
192}, {42, 182}, {119, 235}, {115, 239}, {60, 160}, {31, 130}, {63, 162}, {66,
220}, {79, 209}, {14, 145}, {63, 160}, {40, 183}, {84, 203}, {59, 155}, {75,
235}, {98, 194}, {107, 203}, {9, 168}, {76, 237}, {61, 156}, {57, 152}, {16,
177}, {27, 186}, {28, 189}, {108, 205}, {36, 134}, {70, 228}, {66, 224}, {43,
137}, {6, 165}, {62, 157}, {55, 147}, {65, 229}, {99, 199}, {107, 207}, {24,
189}, {77, 232}, {69, 224}, {30, 187}, {38, 131}, {104, 205}, {19, 181}, {120,
222}, {65, 231}, {35, 133}, {96, 198}, {9, 174}, {58, 157}, {22, 177}, {35,
132}, {52, 147}, {102, 193}, {32, 136}, {119, 223}, {68, 236}, {43, 131}, {49,
153}, {103, 207}, {6, 175}, {41, 128}, {48, 153}, {89, 240}, {110, 199}, {36,
142}, {118, 220}, {116, 222}, {56, 146}, {37, 143}, {43, 129}, {47, 132}, {72,
227}, {4, 168}, {74, 230}, {21, 185}, {33, 141}, {37, 137}, {97, 205}, {99,
207}, {11, 166}, {71, 234}, {103, 202}, {113, 220}, {56, 150}, {101, 203}, {41,
134}, {68, 235}, {59, 148}, {7, 183}, {10, 186}, {17, 161}, {103, 215}, {19,
162}, {117, 196}, {33, 144}, {113, 192}, {23, 165}, {115, 193}, {29, 175}, {49,
131}, {80, 226}, {44, 159}, {50, 129}, {96, 211}, {5, 177}, {117, 193}, {7,
179}, {111, 219}, {10, 191}, {13, 184}, {86, 227}, {11, 189}, {56, 142}, {26,
172}, {45, 155}, {54, 128}, {2, 181}, {39, 144}, {105, 222}, {119, 207}, {21,
172}, {115, 202}, {35, 154}, {19, 169}, {20, 174}, {36, 158}, {109, 215}, {11,
176}, {114, 201}, {15, 180}, {31, 164}, {95, 228}, {2, 190}, {34, 159}, {88,
229}, {32, 158}, {83, 237}, {1, 190}, {100, 219}, {106, 213}, {12, 204}, {49,
240}, {67, 130}, {96, 161}, {38, 228}, {120, 186}, {98, 160}, {101, 167}, {111,
173}, {114, 176}, {36, 231}, {78, 141}, {80, 147}, {104, 171}, {105, 170}, {77,
137}, {118, 178}, {80, 148}, {19, 214}, {40, 237}, {89, 159}, {91, 157}, {109,
171}, {22, 209}, {42, 237}, {6, 206}, {116, 188}, {26, 210}, {86, 158}, {95,
150}, {22, 220}, {31, 213}, {32, 234}, {37, 238}, {81, 154}, {104, 163}, {15,
195}, {93, 145}, {1, 204}, {24, 213}, {38, 235}, {44, 225}, {84, 153}, {85,
152}, {86, 155}, {13, 195}, {117, 187}, {23, 217}, {24, 214}, {44, 226}, {1,
206}, {67, 140}, {79, 128}, {4, 212}, {55, 231}, {8, 216}, {27, 203}, {99, 179},
{17, 195}, {90, 136}, {93, 143}, {97, 179}, {14, 221}, {116, 167}, {57, 234},
{54, 229}, {88, 139}, {52, 224}, {73, 157}, {54, 226}, {10, 223}, {20, 193},
{100, 177}, {111, 186}, {16, 198}, {89, 143}, {94, 136}, {21, 194}, {116, 163},
{49, 230}, {87, 128}, {6, 222}, {117, 173}, {62, 230}, {82, 138}, {100, 188},
{27, 194}, {115, 170}, {28, 197}, {51, 234}, {78, 151}, {83, 138}, {88, 129},
{5, 223}, {69, 159}, {102, 188}, {1, 218}, {3, 216}, {9, 210}, {85, 142}, {110,
181}, {53, 233}, {91, 135}, {98, 190}, {81, 140}, {82, 143}, {61, 227}, {70,
152}, {68, 154}, {90, 132}, {106, 180}, {25, 198}, {98, 189}, {111, 176}, {112,
175}, {94, 190}, {101, 133}, {103, 135}, {110, 142}, {112, 144}, {75, 170},
{108, 141}, {12, 238}, {47, 204}, {118, 149}, {48, 211}, {51, 208}, {85, 182},
{8, 236}, {55, 211}, {11, 239}, {66, 167}, {55, 209}, {72, 174}, {97, 134},
{118, 158}, {25, 240}, {76, 165}, {33, 200}, {82, 187}, {108, 133}, {46, 196},
{67, 169}, {4, 239}, {119, 156}, {50, 217}, {51, 216}, {79, 164}, {102, 141},
{108, 135}, {114, 153}, {13, 225}, {66, 174}, {56, 212}, {44, 192}, {53, 217},
{113, 156}, {9, 231}, {77, 163}, {72, 166}, {70, 168}, {48, 223}, {91, 180},
{95, 176}, {61, 205}, {39, 214}, {26, 232}, {120, 138}, {71, 181}, {58, 200},
{31, 236}, {75, 184}, {58, 201}, {94, 173}, {18, 230}, {41, 221}, {23, 226},
{57, 204}, {34, 215}, {37, 208}, {50, 199}, {113, 132}, {27, 236}, {8, 240},
{76, 180}, {65, 185}, {78, 182}, {29, 228}, {94, 167}, {112, 137}, {52, 206},
{73, 179}, {60, 198}, {73, 178}, {120, 131}, {96, 155}, {28, 224}, {71, 187},
{39, 218}, {92, 161}, {104, 149}, {107, 150}, {22, 232}, {65, 191}, {61, 195},
{85, 171}, {92, 162}, {107, 149}, {23, 232}, {73, 182}, {30, 225}, {41, 214},
{86, 169}, {90, 165}, {105, 150} }>;
(II) A more general form is to represent the graph as the orbit of {114, 127}
under the group generated by the following permutations:
a: (2, 95, 6, 47)(4, 83, 14, 34)(7, 38, 23, 86)(8, 93, 20, 78)(9, 42, 31,
89)(10, 43, 22, 36)(11, 62, 35, 71)(12, 94, 39, 84)(15, 30, 46, 58)(16, 41, 48,
88)(17, 44, 45, 40)(18, 21, 51, 28)(19, 114, 29, 90)(24, 49, 26, 32)(25, 87, 64,
106)(27, 37, 66, 85)(33, 91, 81, 117)(50, 100, 97, 119)(52, 57, 98, 74)(53, 61,
99, 75)(54, 96)(55, 65, 60, 79)(56, 120, 77, 118)(59, 63, 92, 80)(67, 69, 70,
76)(68, 82, 72, 73)(101, 109)(102, 108, 103, 115)(104, 107, 105, 116)(110, 111,
112, 113)(121, 133, 215, 239)(122, 173, 144, 192)(123, 195, 225, 184)(124, 162,
201, 148)(125, 213, 240, 210)(126, 151, 216, 145)(127, 228, 165, 169)(128, 211,
229, 198)(129, 177, 134, 223)(130, 159, 168, 237)(131, 232, 158, 146)(132, 181,
176, 175)(135, 202, 193, 141)(136, 214, 153, 139)(137, 220, 142, 186)(138, 221,
178, 212)(140, 196, 200, 180)(143, 174, 182, 236)(147, 185, 160, 197)(149, 150,
222, 163)(152, 194, 208, 224)(154, 187, 166, 157)(155, 183, 161, 226)(156, 199,
219, 233)(164, 209, 231, 191)(167, 171, 203, 238)(170, 188, 205, 207)(172, 234,
189, 230)(179, 235, 217, 227)(190, 218, 206, 204) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 7, 54, 23, 6)(3, 20, 64, 96, 25, 8)(4, 72, 75, 17, 81, 108)(5, 43, 37,
109, 85, 36)(9, 100, 38, 67, 103, 78)(10, 79, 82, 62, 57, 118)(11, 46, 13, 15,
35, 101)(12, 104, 56, 41, 50, 112)(14, 115, 33, 45, 61, 68)(16, 49, 51, 34, 42,
55)(18, 32, 48, 60, 89, 83)(19, 99, 106, 26, 116, 95)(21, 66, 111, 92, 30,
91)(22, 120, 74, 71, 73, 65)(24, 87, 53, 29, 47, 107)(27, 28, 117, 58, 59,
113)(31, 93, 102, 70, 86, 119)(39, 110, 97, 88, 77, 105)(40, 80, 90, 84, 98,
69)(44, 76, 52, 94, 114, 63)(121, 152, 158, 223, 164, 143)(122, 205, 212, 221,
170, 144)(123, 148, 132, 203, 189, 196)(124, 192, 194, 224, 173, 201)(125, 211,
198, 240, 216, 126)(127, 183, 226, 165, 206, 190)(128, 217, 175, 204, 149,
146)(129, 137, 238, 171, 142, 134)(130, 202, 141, 168, 227, 235)(131, 208, 215,
182, 231, 177)(133, 239, 166, 184, 195, 154)(135, 151, 174, 219, 161, 140)(136,
153, 160, 159, 237, 147)(138, 230, 234, 178, 191, 209)(139, 163, 150, 214, 199,
233)(145, 193, 200, 155, 156, 236)(157, 185, 220, 186, 197, 187)(162, 225, 180,
172, 167, 176)(169, 207, 213, 210, 188, 228)(179, 229, 232, 222, 218, 181)
C4[ 240, 165 ]
240
-1 190 204 206 218
-2 190 181 127 149
-3 145 126 216 151
-4 168 212 151 239
-5 177 134 223 129
-6 165 222 206 175
-7 146 179 127 183
-8 135 236 216 240
-9 231 210 168 174
-10 146 223 191 186
-11 176 166 189 239
-12 122 204 139 238
-13 123 225 184 195
-14 133 221 145 130
-15 154 180 148 195
-16 198 177 136 138
-17 144 161 195 130
-18 147 126 152 230
-19 169 181 214 162
-20 125 126 193 174
-21 172 194 151 185
-22 209 220 177 232
-23 165 232 226 217
-24 189 146 213 214
-25 198 156 140 240
-26 210 232 139 172
-27 203 236 194 186
-28 145 189 224 197
-29 148 139 228 175
-30 187 124 225 140
-31 213 236 130 164
-32 234 125 136 158
-33 144 166 200 141
-34 178 126 159 215
-35 132 154 133 172
-36 231 134 158 142
-37 143 137 238 208
-38 235 161 228 131
-39 144 214 171 218
-40 123 237 183 173
-41 221 134 214 128
-42 125 191 182 237
-43 137 129 131 164
-44 159 192 225 226
-45 122 155 168 184
-46 166 162 184 196
-47 132 169 204 163
-48 178 211 223 153
-49 240 131 153 230
-50 199 170 129 217
-51 234 160 216 208
-52 147 224 172 206
-53 188 123 233 217
-54 226 128 183 229
-55 209 231 211 147
-56 146 212 150 142
-57 234 204 152 185
-58 123 200 157 201
-59 155 124 148 185
-60 198 191 160 164
-61 156 205 227 195
-62 121 157 175 230
-63 124 160 183 162
-64 200 211 125 219
-65 231 191 185 229
-66 220 167 224 174
-67 169 140 130 208
-68 154 212 235 236
-69 224 159 127 196
-70 200 168 228 152
-71 187 234 181 215
-72 166 221 227 174
-73 178 157 179 182
-74 218 197 208 230
-75 235 170 184 219
-76 165 180 237 194
-77 221 232 137 163
-78 213 182 151 141
-79 209 128 164 197
-80 201 147 148 226
-81 154 122 202 140
-82 143 187 138 217
-83 121 138 237 216
-84 192 203 206 153
-85 171 182 152 142
-86 155 158 169 227
-87 199 210 128 196
-88 212 139 129 229
-89 143 209 159 240
-90 132 165 124 136
-91 135 157 180 192
-92 201 161 162 197
-93 143 210 145 202
-94 167 190 136 173
-95 176 150 228 218
-96 198 155 211 161
-97 134 233 179 205
-98 189 190 160 194
-99 199 179 225 207
-100 177 188 227 219
-101 133 167 203 239
-102 121 188 193 141
-103 135 202 215 207
-104 149 171 205 163
-105 222 170 150 238
-106 233 180 213 229
-107 203 149 150 207
-108 133 135 205 141
-109 121 171 215 238
-110 122 199 181 142
-111 176 173 186 219
-112 144 233 137 175
-113 132 220 156 192
-114 176 201 127 153
-115 202 170 193 239
-116 188 167 222 163
-117 187 193 173 196
-118 220 178 158 149
-119 156 223 235 207
-120 222 138 131 186
-121 102 83 62 109
-122 110 12 45 81
-123 13 58 40 53
-124 90 59 30 63
-125 20 42 64 32
-126 34 3 18 20
-127 2 69 114 7
-128 79 41 54 87
-129 88 5 50 43
-130 67 14 17 31
-131 38 49 43 120
-132 35 90 47 113
-133 35 101 14 108
-134 36 5 41 97
-135 91 103 8 108
-136 90 16 94 32
-137 77 112 37 43
-138 16 82 83 120
-139 88 12 26 29
-140 67 25 81 30
-141 33 78 102 108
-142 110 56 36 85
-143 89 37 82 93
-144 33 112 17 39
-145 3 14 93 28
-146 56 24 7 10
-147 55 80 18 52
-148 80 15 59 29
-149 2 104 107 118
-150 56 105 95 107
-151 78 3 4 21
-152 57 70 18 85
-153 48 114 49 84
-154 35 68 15 81
-155 45 59 96 86
-156 25 113 61 119
-157 58 91 62 73
-158 36 118 86 32
-159 44 34 89 69
-160 60 51 63 98
-161 92 38 17 96
-162 46 92 19 63
-163 77 47 104 116
-164 79 60 31 43
-165 23 90 6 76
-166 11 33 46 72
-167 66 101 94 116
-168 45 4 70 9
-169 67 47 19 86
-170 115 50 105 75
-171 104 39 85 109
-172 35 26 52 21
-173 111 94 40 117
-174 66 72 9 20
-175 112 6 29 62
-176 11 111 114 95
-177 22 100 5 16
-178 34 48 73 118
-179 99 7 73 97
-180 91 15 106 76
-181 110 2 71 19
-182 78 73 85 42
-183 7 40 63 54
-184 45 13 46 75
-185 57 59 21 65
-186 111 27 10 120
-187 71 82 117 30
-188 100 102 116 53
-189 11 24 28 98
-190 1 2 94 98
-191 60 42 10 65
-192 44 91 113 84
-193 102 115 117 20
-194 27 21 76 98
-195 13 15 17 61
-196 46 69 117 87
-197 79 92 28 74
-198 25 16 60 96
-199 99 110 50 87
-200 33 58 70 64
-201 58 80 92 114
-202 81 103 93 115
-203 101 27 84 107
-204 1 12 57 47
-205 104 61 97 108
-206 1 6 84 52
-207 99 103 107 119
-208 67 37 51 74
-209 22 55 89 79
-210 26 93 9 87
-211 55 48 96 64
-212 88 56 68 4
-213 78 24 106 31
-214 24 39 19 41
-215 34 103 71 109
-216 3 83 51 8
-217 23 82 50 53
-218 1 39 95 74
-219 100 111 64 75
-220 22 66 113 118
-221 77 14 72 41
-222 6 105 116 120
-223 48 5 119 10
-224 66 69 28 52
-225 44 99 13 30
-226 44 23 80 54
-227 100 61 72 86
-228 70 38 29 95
-229 88 106 54 65
-230 49 18 62 74
-231 55 36 9 65
-232 22 77 23 26
-233 112 106 53 97
-234 57 71 51 32
-235 68 38 75 119
-236 68 27 8 31
-237 83 40 42 76
-238 12 37 105 109
-239 11 101 4 115
-240 89 25 49 8
0