C4graphGraph forms for C4 [ 240, 166 ] = BGCG(UG(ATD[120,10]);K1;{18,19})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 166 ] = BGCG(UG(ATD[120,10]);K1;{18,19}).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {116, 126}, {113, 122}, {118, 122}, {116, 121}, {105, 123}, {108, 126}, {104, 123}, {109, 121}, {97, 123}, {91, 126}, {91, 124}, {94, 121}, {86, 125}, {81, 127}, {82, 124}, {83, 124}, {72, 127}, {71, 122}, {71, 121}, {50, 123}, {44, 124}, {45, 127}, {47, 125}, {30, 122}, {26, 125}, {14, 127}, {9, 125}, {6, 126}, {53, 181}, {56, 184}, {90, 218}, {26, 155}, {40, 169}, {85, 212}, {2, 128}, {13, 142}, {39, 164}, {44, 175}, {30, 155}, {37, 160}, {41, 172}, {77, 200}, {83, 214}, {67, 197}, {30, 153}, {68, 195}, {58, 189}, {56, 191}, {38, 161}, {43, 163}, {70, 206}, {69, 205}, {67, 203}, {106, 226}, {16, 153}, {45, 164}, {6, 140}, {40, 162}, {51, 185}, {81, 219}, {83, 217}, {108, 230}, {2, 137}, {75, 192}, {53, 190}, {31, 148}, {94, 213}, {96, 235}, {109, 230}, {23, 155}, {62, 178}, {24, 148}, {93, 209}, {100, 232}, {18, 159}, {5, 139}, {27, 149}, {106, 228}, {21, 154}, {47, 160}, {87, 216}, {36, 180}, {61, 173}, {49, 161}, {29, 140}, {65, 208}, {42, 187}, {83, 194}, {88, 201}, {93, 204}, {33, 179}, {87, 197}, {16, 131}, {38, 181}, {77, 222}, {87, 196}, {94, 205}, {3, 151}, {13, 153}, {23, 131}, {3, 150}, {20, 129}, {35, 182}, {50, 167}, {95, 202}, {19, 133}, {120, 238}, {63, 169}, {39, 177}, {26, 141}, {61, 170}, {27, 140}, {36, 179}, {42, 189}, {80, 199}, {90, 205}, {93, 197}, {9, 144}, {10, 147}, {45, 180}, {86, 207}, {17, 139}, {19, 137}, {35, 185}, {1, 154}, {73, 210}, {29, 134}, {33, 186}, {77, 209}, {2, 159}, {119, 234}, {69, 216}, {67, 222}, {112, 237}, {1, 159}, {119, 233}, {4, 154}, {8, 150}, {35, 188}, {53, 170}, {79, 208}, {113, 238}, {43, 139}, {72, 232}, {46, 142}, {76, 236}, {36, 133}, {103, 198}, {110, 207}, {9, 171}, {115, 209}, {52, 150}, {97, 195}, {99, 192}, {105, 202}, {49, 149}, {70, 226}, {69, 225}, {79, 235}, {9, 172}, {116, 209}, {56, 158}, {71, 225}, {110, 200}, {32, 135}, {117, 210}, {63, 152}, {55, 144}, {41, 142}, {96, 199}, {4, 172}, {15, 167}, {37, 141}, {25, 176}, {35, 138}, {106, 195}, {5, 175}, {13, 167}, {17, 186}, {120, 211}, {21, 185}, {52, 152}, {78, 226}, {79, 227}, {99, 207}, {102, 202}, {43, 134}, {15, 161}, {118, 216}, {10, 165}, {60, 147}, {105, 198}, {111, 192}, {11, 187}, {12, 188}, {22, 166}, {39, 151}, {5, 180}, {110, 223}, {10, 184}, {38, 148}, {46, 156}, {4, 183}, {34, 145}, {52, 135}, {104, 219}, {24, 172}, {119, 195}, {59, 143}, {54, 131}, {57, 143}, {61, 139}, {98, 212}, {19, 164}, {37, 146}, {98, 213}, {8, 176}, {48, 136}, {82, 234}, {92, 228}, {15, 182}, {22, 175}, {39, 158}, {43, 146}, {52, 141}, {89, 224}, {11, 177}, {63, 133}, {20, 174}, {84, 238}, {89, 227}, {38, 157}, {32, 156}, {89, 229}, {101, 217}, {103, 219}, {111, 211}, {23, 170}, {34, 159}, {86, 235}, {4, 186}, {120, 198}, {57, 135}, {27, 165}, {46, 144}, {20, 171}, {60, 131}, {87, 232}, {102, 217}, {1, 193}, {12, 204}, {20, 213}, {72, 137}, {108, 173}, {27, 217}, {64, 130}, {41, 235}, {84, 150}, {1, 194}, {31, 220}, {37, 230}, {81, 146}, {107, 168}, {6, 194}, {115, 183}, {65, 133}, {12, 200}, {11, 206}, {74, 143}, {66, 135}, {21, 208}, {24, 221}, {32, 229}, {88, 157}, {95, 154}, {110, 171}, {112, 181}, {88, 158}, {112, 182}, {7, 192}, {74, 141}, {12, 203}, {14, 201}, {25, 222}, {34, 229}, {22, 222}, {68, 140}, {80, 152}, {79, 134}, {96, 169}, {106, 163}, {81, 155}, {86, 156}, {66, 137}, {73, 130}, {95, 148}, {22, 218}, {24, 212}, {28, 208}, {92, 144}, {99, 175}, {100, 168}, {73, 132}, {8, 198}, {3, 204}, {14, 193}, {92, 147}, {32, 240}, {55, 231}, {114, 162}, {49, 224}, {54, 231}, {85, 132}, {5, 215}, {62, 236}, {54, 228}, {28, 206}, {51, 225}, {15, 220}, {117, 166}, {66, 145}, {62, 237}, {60, 239}, {58, 233}, {26, 201}, {89, 138}, {92, 143}, {108, 191}, {11, 223}, {101, 177}, {107, 191}, {111, 187}, {105, 188}, {3, 213}, {68, 146}, {19, 197}, {29, 203}, {31, 201}, {80, 134}, {94, 136}, {48, 231}, {93, 138}, {50, 234}, {55, 239}, {102, 190}, {48, 233}, {78, 151}, {101, 188}, {103, 190}, {104, 177}, {107, 178}, {7, 221}, {17, 203}, {42, 240}, {50, 232}, {109, 183}, {95, 132}, {120, 163}, {113, 170}, {18, 206}, {116, 168}, {65, 157}, {63, 227}, {51, 239}, {114, 174}, {10, 215}, {74, 151}, {28, 193}, {99, 190}, {25, 199}, {115, 173}, {74, 149}, {119, 168}, {109, 178}, {7, 231}, {60, 220}, {41, 200}, {59, 218}, {44, 205}, {114, 147}, {53, 215}, {70, 164}, {85, 183}, {97, 130}, {13, 233}, {66, 166}, {8, 237}, {6, 224}, {75, 173}, {48, 214}, {84, 178}, {85, 179}, {100, 130}, {49, 214}, {59, 220}, {58, 221}, {56, 223}, {102, 129}, {111, 136}, {14, 230}, {45, 196}, {117, 156}, {64, 169}, {58, 211}, {104, 129}, {90, 176}, {33, 202}, {69, 174}, {44, 199}, {107, 128}, {71, 171}, {73, 165}, {55, 218}, {62, 211}, {57, 212}, {80, 189}, {47, 193}, {76, 162}, {64, 174}, {112, 158}, {76, 163}, {97, 142}, {34, 210}, {46, 223}, {51, 194}, {78, 191}, {2, 240}, {61, 207}, {54, 196}, {31, 237}, {82, 160}, {25, 234}, {115, 128}, {47, 219}, {82, 166}, {101, 145}, {16, 229}, {117, 128}, {57, 204}, {17, 228}, {78, 187}, {84, 162}, {103, 145}, {114, 132}, {7, 240}, {118, 129}, {23, 224}, {98, 149}, {64, 184}, {21, 236}, {40, 210}, {67, 185}, {90, 160}, {91, 161}, {98, 152}, {72, 179}, {77, 182}, {113, 138}, {33, 221}, {65, 189}, {36, 216}, {42, 214}, {76, 176}, {18, 239}, {28, 225}, {30, 227}, {96, 157}, {100, 153}, {16, 238}, {118, 136}, {75, 181}, {70, 184}, {68, 186}, {18, 236}, {91, 165}, {29, 226}, {75, 180}, {59, 196}, {40, 215}, {88, 167} }>;

(II) A more general form is to represent the graph as the orbit of {116, 126} under the group generated by the following permutations:

a: (2, 47, 6, 95)(4, 34, 14, 83)(7, 86, 23, 38)(8, 78, 20, 93)(9, 89, 31, 42)(10, 36, 22, 43)(11, 71, 35, 62)(12, 84, 39, 94)(15, 58, 46, 30)(16, 88, 48, 41)(17, 40, 45, 44)(18, 28, 51, 21)(19, 90, 29, 114)(24, 32, 26, 49)(25, 106, 64, 87)(27, 85, 66, 37)(33, 117, 81, 91)(50, 119, 97, 100)(52, 74, 98, 57)(53, 75, 99, 61)(54, 96)(55, 79, 60, 65)(56, 118, 77, 120)(59, 80, 92, 63)(67, 76, 70, 69)(68, 73, 72, 82)(101, 109)(102, 115, 103, 108)(104, 116, 105, 107)(110, 113, 112, 111)(121, 188, 178, 177)(122, 182, 211, 223)(123, 168)(124, 186, 210, 127)(125, 224, 148, 240)(126, 202, 128, 219)(129, 209, 198, 191)(130, 232, 234, 195)(131, 157, 231, 235)(132, 137, 160, 140)(133, 218, 134, 147)(135, 141, 149, 212)(136, 200, 238, 158)(138, 237, 187, 171)(139, 215, 180, 175)(142, 153, 167, 233)(143, 152)(144, 227, 220, 189)(145, 230, 217, 183)(146, 165, 179, 166)(150, 151, 213, 204)(154, 159, 193, 194)(155, 161, 221, 156)(162, 164, 205, 203)(163, 184, 216, 222)(169, 196, 199, 228)(170, 181, 192, 207)(172, 229, 201, 214)(173, 190)(174, 197, 176, 226)(185, 236, 206, 225)(208, 239)
b: (1, 2)(3, 20)(4, 115)(5, 43)(6, 7)(8, 64)(9, 93)(10, 120)(11, 101)(12, 110)(13, 15)(14, 72)(16, 60)(17, 61)(18, 34)(19, 47)(21, 117)(22, 79)(23, 54)(24, 116)(25, 96)(26, 87)(27, 111)(28, 66)(29, 99)(30, 59)(31, 100)(32, 51)(33, 108)(35, 46)(36, 37)(38, 119)(39, 104)(40, 76)(41, 77)(42, 83)(44, 80)(45, 81)(48, 49)(50, 88)(52, 69)(53, 106)(55, 89)(56, 105)(57, 71)(58, 91)(62, 73)(63, 90)(65, 82)(67, 86)(68, 75)(70, 103)(74, 118)(78, 102)(84, 114)(85, 109)(92, 113)(94, 98)(95, 107)(97, 112)(121, 212)(122, 143)(123, 158)(124, 189)(125, 197)(126, 221)(128, 154)(129, 151)(130, 237)(132, 178)(133, 160)(134, 175)(135, 225)(136, 149)(137, 193)(138, 144)(140, 192)(141, 216)(142, 182)(145, 206)(146, 180)(147, 238)(148, 168)(150, 174)(152, 205)(153, 220)(155, 196)(156, 185)(157, 234)(161, 233)(163, 215)(164, 219)(165, 211)(166, 208)(169, 176)(170, 228)(171, 204)(172, 209)(173, 186)(179, 230)(181, 195)(184, 198)(187, 217)(188, 223)(190, 226)(191, 202)(194, 240)(201, 232)(203, 207)(210, 236)(218, 227)(222, 235)(224, 231)(229, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 166 ]
240
-1 154 159 193 194
-2 137 159 128 240
-3 213 204 150 151
-4 154 172 183 186
-5 180 215 139 175
-6 224 126 194 140
-7 231 221 192 240
-8 176 198 237 150
-9 144 125 171 172
-10 165 147 215 184
-11 187 177 223 206
-12 188 200 203 204
-13 167 233 142 153
-14 201 127 193 230
-15 220 167 182 161
-16 238 229 131 153
-17 203 139 228 186
-18 159 236 206 239
-19 133 137 164 197
-20 213 171 129 174
-21 154 236 185 208
-22 166 222 218 175
-23 155 224 170 131
-24 221 212 148 172
-25 176 199 222 234
-26 155 201 125 141
-27 165 149 140 217
-28 225 193 206 208
-29 134 203 226 140
-30 122 155 227 153
-31 220 201 148 237
-32 156 135 229 240
-33 221 179 202 186
-34 210 145 159 229
-35 188 138 182 185
-36 133 179 180 216
-37 146 160 141 230
-38 157 148 181 161
-39 177 158 151 164
-40 210 169 215 162
-41 200 235 172 142
-42 187 189 214 240
-43 134 146 139 163
-44 199 124 205 175
-45 180 127 196 164
-46 144 156 223 142
-47 125 160 193 219
-48 231 233 136 214
-49 224 214 149 161
-50 232 123 167 234
-51 225 194 239 185
-52 135 150 141 152
-53 190 170 181 215
-54 231 228 196 131
-55 231 144 239 218
-56 223 158 191 184
-57 143 135 212 204
-58 221 189 211 233
-59 143 220 196 218
-60 220 147 239 131
-61 170 139 173 207
-62 178 211 236 237
-63 133 169 227 152
-64 169 184 130 174
-65 133 189 157 208
-66 166 145 135 137
-67 222 203 185 197
-68 146 140 195 186
-69 225 205 216 174
-70 226 184 206 164
-71 121 122 225 171
-72 232 179 137 127
-73 132 165 210 130
-74 143 149 151 141
-75 180 181 192 173
-76 176 236 162 163
-77 209 200 222 182
-78 187 191 226 151
-79 134 235 227 208
-80 199 134 189 152
-81 155 146 127 219
-82 166 124 234 160
-83 124 214 194 217
-84 178 150 238 162
-85 132 179 212 183
-86 156 125 235 207
-87 232 216 196 197
-88 167 157 201 158
-89 224 138 227 229
-90 176 160 205 218
-91 165 124 126 161
-92 143 144 147 228
-93 209 138 204 197
-94 121 136 213 205
-95 132 154 202 148
-96 199 157 169 235
-97 123 195 130 142
-98 212 213 149 152
-99 190 192 207 175
-100 232 168 130 153
-101 177 188 145 217
-102 190 202 129 217
-103 198 145 190 219
-104 177 123 129 219
-105 198 188 123 202
-106 226 195 228 163
-107 178 168 191 128
-108 191 126 173 230
-109 121 178 183 230
-110 200 223 171 207
-111 187 211 136 192
-112 158 181 182 237
-113 122 170 138 238
-114 132 147 162 174
-115 209 128 183 173
-116 121 209 168 126
-117 166 210 156 128
-118 122 136 216 129
-119 233 168 234 195
-120 198 211 238 163
-121 71 94 116 109
-122 113 71 30 118
-123 104 50 105 97
-124 44 91 82 83
-125 47 26 9 86
-126 91 6 116 108
-127 45 14 81 72
-128 2 115 117 107
-129 102 104 118 20
-130 100 73 64 97
-131 23 16 60 54
-132 114 73 95 85
-133 36 19 63 65
-134 79 80 29 43
-135 66 57 52 32
-136 111 48 94 118
-137 66 2 72 19
-138 89 35 113 93
-139 5 17 61 43
-140 68 27 6 29
-141 26 37 52 74
-142 13 46 41 97
-143 57 59 92 74
-144 55 46 92 9
-145 66 34 101 103
-146 68 37 81 43
-147 92 114 60 10
-148 24 38 95 31
-149 27 49 74 98
-150 3 84 8 52
-151 78 3 39 74
-152 80 52 63 98
-153 100 13 16 30
-154 1 4 95 21
-155 23 26 81 30
-156 46 117 86 32
-157 88 38 96 65
-158 88 56 112 39
-159 1 34 2 18
-160 90 47 37 82
-161 91 15 38 49
-162 114 40 84 76
-163 106 43 76 120
-164 45 70 39 19
-165 91 27 73 10
-166 22 66 82 117
-167 88 13 15 50
-168 100 116 107 119
-169 40 63 96 64
-170 23 113 61 53
-171 110 71 9 20
-172 24 4 41 9
-173 115 61 75 108
-174 69 114 20 64
-175 22 44 99 5
-176 90 25 8 76
-177 11 101 104 39
-178 62 84 107 109
-179 33 36 72 85
-180 45 36 5 75
-181 112 38 53 75
-182 77 35 112 15
-183 4 115 85 109
-184 56 70 64 10
-185 67 35 51 21
-186 33 68 4 17
-187 11 78 111 42
-188 12 35 101 105
-189 58 80 42 65
-190 99 102 103 53
-191 56 78 107 108
-192 99 111 7 75
-193 1 14 47 28
-194 1 6 83 51
-195 68 106 97 119
-196 45 59 54 87
-197 67 93 19 87
-198 103 105 8 120
-199 44 25 80 96
-200 77 110 12 41
-201 88 14 26 31
-202 33 102 105 95
-203 12 67 17 29
-204 12 57 3 93
-205 44 90 69 94
-206 11 70 28 18
-207 99 110 61 86
-208 79 28 21 65
-209 77 93 115 116
-210 34 40 73 117
-211 111 58 62 120
-212 24 57 85 98
-213 3 94 20 98
-214 48 49 83 42
-215 5 40 53 10
-216 36 69 118 87
-217 101 102 27 83
-218 22 55 90 59
-219 47 81 103 104
-220 15 59 60 31
-221 33 24 58 7
-222 22 77 67 25
-223 11 110 56 46
-224 23 89 49 6
-225 69 71 28 51
-226 78 70 29 106
-227 89 79 30 63
-228 92 17 106 54
-229 34 89 16 32
-230 14 37 108 109
-231 55 48 7 54
-232 100 50 72 87
-233 13 58 48 119
-234 25 82 50 119
-235 79 41 96 86
-236 18 62 21 76
-237 112 62 8 31
-238 113 16 84 120
-239 55 60 18 51
-240 2 7 42 32
0

**************