[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 167 ] =
BGCG(UG(ATD[120,10]);K1;{20,21}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {120, 123}, {113, 124}, {105, 123}, {107, 126}, {98, 126}, {97,
124}, {87, 125}, {81, 122}, {74, 123}, {73, 124}, {61, 124}, {60, 121}, {56,
126}, {63, 121}, {56, 127}, {53, 125}, {49, 123}, {50, 125}, {40, 125}, {45,
122}, {35, 122}, {24, 126}, {31, 121}, {19, 121}, {21, 127}, {21, 122}, {10,
127}, {4, 127}, {16, 144}, {72, 200}, {27, 155}, {52, 180}, {102, 230}, {7,
134}, {76, 205}, {50, 179}, {92, 221}, {104, 233}, {41, 171}, {58, 184}, {55,
181}, {76, 206}, {110, 236}, {57, 186}, {87, 212}, {5, 129}, {20, 144}, {35,
167}, {36, 160}, {48, 180}, {9, 140}, {61, 184}, {28, 153}, {51, 182}, {100,
225}, {18, 148}, {78, 200}, {83, 213}, {10, 141}, {62, 185}, {26, 157}, {89,
222}, {91, 220}, {12, 132}, {71, 207}, {13, 133}, {17, 153}, {34, 170}, {79,
199}, {52, 189}, {93, 212}, {46, 164}, {64, 202}, {60, 182}, {56, 178}, {12,
135}, {57, 178}, {28, 151}, {45, 166}, {98, 238}, {18, 159}, {31, 146}, {37,
168}, {36, 170}, {37, 171}, {12, 131}, {7, 151}, {65, 209}, {23, 135}, {39,
183}, {50, 163}, {53, 164}, {78, 223}, {112, 225}, {11, 153}, {119, 229}, {62,
172}, {80, 195}, {47, 187}, {86, 194}, {4, 145}, {120, 237}, {73, 220}, {84,
193}, {91, 206}, {26, 140}, {69, 211}, {41, 191}, {2, 149}, {117, 226}, {15,
152}, {22, 129}, {90, 205}, {112, 231}, {5, 156}, {67, 218}, {22, 143}, {25,
128}, {76, 213}, {8, 146}, {11, 145}, {17, 139}, {32, 186}, {91, 193}, {95,
197}, {5, 158}, {117, 238}, {30, 133}, {76, 215}, {113, 234}, {51, 175}, {118,
234}, {71, 219}, {80, 204}, {94, 194}, {26, 135}, {117, 232}, {75, 214}, {49,
172}, {52, 169}, {24, 134}, {29, 131}, {54, 169}, {77, 210}, {92, 195}, {95,
192}, {70, 230}, {120, 216}, {115, 211}, {37, 132}, {65, 224}, {54, 151}, {39,
134}, {108, 206}, {109, 207}, {33, 130}, {116, 215}, {59, 152}, {103, 196}, {6,
162}, {7, 163}, {19, 183}, {41, 141}, {44, 136}, {98, 198}, {27, 190}, {73,
236}, {71, 226}, {39, 130}, {86, 240}, {117, 211}, {24, 191}, {63, 152}, {25,
190}, {26, 189}, {29, 181}, {55, 159}, {101, 205}, {4, 173}, {72, 225}, {66,
235}, {13, 164}, {14, 167}, {98, 203}, {62, 148}, {67, 233}, {96, 202}, {34,
137}, {71, 236}, {64, 235}, {38, 138}, {47, 131}, {106, 198}, {45, 128}, {11,
165}, {73, 231}, {65, 239}, {31, 177}, {110, 192}, {35, 140}, {32, 144}, {40,
152}, {94, 238}, {13, 188}, {60, 141}, {81, 227}, {85, 231}, {100, 214}, {3,
176}, {120, 203}, {15, 188}, {29, 174}, {86, 229}, {102, 213}, {10, 190}, {13,
184}, {8, 190}, {116, 194}, {61, 139}, {108, 218}, {43, 156}, {111, 216}, {18,
170}, {58, 130}, {55, 143}, {25, 161}, {33, 153}, {42, 146}, {44, 148}, {97,
217}, {38, 159}, {44, 149}, {105, 208}, {1, 187}, {31, 165}, {36, 158}, {82,
232}, {90, 224}, {94, 228}, {19, 168}, {49, 138}, {9, 181}, {24, 165}, {83,
237}, {90, 228}, {14, 177}, {29, 162}, {106, 213}, {39, 231}, {46, 238}, {93,
157}, {99, 163}, {101, 165}, {1, 192}, {16, 209}, {79, 142}, {83, 146}, {96,
161}, {109, 172}, {79, 141}, {118, 180}, {102, 164}, {25, 218}, {30, 221}, {109,
174}, {22, 210}, {30, 219}, {88, 157}, {109, 168}, {114, 183}, {16, 214}, {43,
237}, {47, 233}, {33, 230}, {74, 130}, {103, 175}, {112, 185}, {116, 189}, {20,
222}, {40, 226}, {42, 224}, {106, 160}, {3, 200}, {75, 128}, {64, 139}, {112,
187}, {8, 196}, {118, 186}, {69, 137}, {17, 221}, {94, 147}, {11, 197}, {75,
133}, {65, 143}, {15, 193}, {23, 217}, {28, 210}, {34, 236}, {6, 201}, {28,
211}, {84, 155}, {91, 148}, {105, 166}, {27, 203}, {69, 149}, {114, 162}, {6,
215}, {66, 147}, {51, 226}, {92, 142}, {104, 186}, {35, 240}, {69, 150}, {108,
191}, {8, 220}, {66, 150}, {53, 225}, {14, 218}, {108, 184}, {5, 208}, {68,
145}, {48, 229}, {9, 223}, {27, 205}, {82, 132}, {96, 182}, {113, 167}, {9,
222}, {88, 143}, {89, 142}, {61, 229}, {79, 151}, {1, 216}, {54, 239}, {2, 219},
{90, 131}, {10, 208}, {57, 227}, {4, 223}, {72, 147}, {59, 224}, {16, 203}, {21,
206}, {103, 188}, {7, 219}, {118, 170}, {14, 210}, {111, 179}, {6, 216}, {115,
173}, {68, 154}, {23, 201}, {51, 237}, {84, 138}, {87, 137}, {3, 220}, {68,
155}, {47, 240}, {99, 188}, {70, 166}, {86, 182}, {97, 129}, {45, 204}, {74,
171}, {81, 176}, {82, 179}, {107, 138}, {32, 194}, {63, 221}, {50, 208}, {106,
136}, {38, 197}, {114, 150}, {42, 207}, {80, 181}, {2, 228}, {77, 171}, {85,
178}, {2, 234}, {116, 156}, {70, 174}, {89, 177}, {95, 183}, {33, 200}, {119,
158}, {97, 136}, {101, 140}, {104, 129}, {83, 185}, {88, 178}, {110, 132}, {113,
155}, {1, 234}, {74, 161}, {70, 173}, {67, 168}, {3, 232}, {46, 197}, {82, 185},
{99, 136}, {43, 199}, {67, 175}, {53, 217}, {93, 177}, {46, 195}, {119, 154},
{64, 173}, {60, 209}, {93, 176}, {78, 160}, {115, 157}, {103, 137}, {104, 134},
{105, 135}, {12, 227}, {72, 167}, {32, 207}, {44, 195}, {100, 139}, {38, 214},
{55, 199}, {54, 198}, {41, 217}, {77, 189}, {37, 212}, {59, 202}, {78, 191},
{57, 202}, {58, 201}, {101, 150}, {18, 230}, {68, 176}, {48, 196}, {110, 154},
{36, 209}, {52, 193}, {42, 223}, {49, 196}, {85, 160}, {89, 172}, {107, 158},
{58, 204}, {66, 180}, {77, 187}, {84, 162}, {102, 144}, {115, 133}, {19, 228},
{119, 128}, {62, 201}, {59, 204}, {48, 199}, {17, 233}, {75, 179}, {56, 192},
{23, 239}, {100, 156}, {63, 198}, {80, 169}, {95, 166}, {99, 154}, {21, 239},
{85, 174}, {88, 163}, {20, 232}, {34, 222}, {111, 147}, {114, 142}, {22, 235},
{30, 227}, {92, 161}, {81, 175}, {87, 169}, {107, 149}, {111, 145}, {15, 240},
{20, 235}, {40, 215}, {43, 212}, {96, 159} }>;
(II) A more general form is to represent the graph as the orbit of {120, 123}
under the group generated by the following permutations:
a: (1, 2, 107, 84, 114, 95)(3, 20, 102, 83, 42, 78)(4, 72, 117, 16, 76, 31)(5,
15, 79, 45, 77, 30)(6, 19, 56, 113, 69, 38)(7, 119, 52, 92, 105, 47)(8, 9, 33,
82, 32, 106)(10, 35, 28, 75, 116, 63)(11, 111, 94, 98, 27, 101)(12, 104, 99, 48,
80, 74)(13, 43, 59, 41, 81, 22)(14, 115, 100, 40, 60, 21)(17, 50, 86, 54, 25,
26)(18, 62, 109, 85, 73, 34)(23, 67, 88, 61, 87, 96)(24, 68, 66, 46, 120,
90)(29, 39, 110, 118, 44, 49)(36, 91, 89, 70, 112, 71)(37, 57, 97, 103, 55,
58)(51, 65, 108, 93, 64, 53)(121, 127, 167, 211, 214, 215)(122, 210, 133, 156,
152, 141)(123, 131, 134, 154, 180, 195)(124, 137, 159, 201, 168, 178)(125, 182,
239, 218, 157, 139)(126, 155, 150, 197, 216, 228)(128, 189, 221, 208, 240,
151)(129, 188, 199, 204, 171, 227)(130, 132, 186, 136, 196, 181)(135, 233, 163,
229, 169, 161)(138, 162, 183, 192, 234, 149)(140, 153, 179, 194, 198, 190)(142,
166, 187, 219, 158, 193)(143, 184, 212, 202, 217, 175)(144, 213, 146, 223, 200,
232)(145, 147, 238, 203, 205, 165)(148, 172, 174, 231, 236, 170)(160, 220, 222,
230, 185, 207)(164, 237, 224, 191, 176, 235)(173, 225, 226, 209, 206, 177) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 95, 6, 47)(4, 83, 14, 34)(7, 38, 23, 86)(8, 93, 20, 78)(9, 42, 31,
89)(10, 43, 22, 36)(11, 62, 35, 71)(12, 94, 39, 84)(15, 30, 46, 58)(16, 41, 48,
88)(17, 44, 45, 40)(18, 21, 51, 28)(19, 114, 29, 90)(24, 49, 26, 32)(25, 87, 64,
106)(27, 37, 66, 85)(33, 91, 81, 117)(50, 100, 97, 119)(52, 57, 98, 74)(53, 61,
99, 75)(54, 96)(55, 65, 60, 79)(56, 120, 77, 118)(59, 63, 92, 80)(67, 69, 70,
76)(68, 82, 72, 73)(101, 109)(102, 108, 103, 115)(104, 107, 105, 116)(110, 111,
112, 113)(121, 142, 181, 224)(122, 226, 153, 148)(123, 189, 186, 126)(124, 154,
179, 225)(125, 139, 136, 128)(127, 237, 210, 170)(129, 158, 208, 156)(130, 193,
227, 238)(131, 228, 183, 162)(132, 147, 231, 155)(133, 164, 184, 188)(134, 138,
135, 194)(137, 173, 213, 218)(140, 207, 165, 172)(141, 199, 143, 209)(144, 191,
196, 157)(145, 185, 167, 236)(146, 177, 222, 223)(149, 166, 215, 233)(150, 174,
205, 168)(151, 159, 239, 182)(152, 221, 195, 204)(160, 190, 212, 235)(161, 169,
202, 198)(163, 214, 217, 229)(171, 180, 178, 203)(175, 211, 230, 206)(176, 232,
200, 220)(187, 234, 192, 216)(197, 201, 240, 219)
C4[ 240, 167 ]
240
-1 187 234 192 216
-2 234 149 228 219
-3 176 220 232 200
-4 145 223 127 173
-5 156 158 129 208
-6 201 215 216 162
-7 134 151 163 219
-8 220 146 190 196
-9 222 223 181 140
-10 190 127 141 208
-11 165 145 153 197
-12 132 135 227 131
-13 133 188 184 164
-14 177 210 167 218
-15 188 193 152 240
-16 209 144 203 214
-17 221 233 139 153
-18 148 159 170 230
-19 121 168 183 228
-20 144 232 222 235
-21 122 127 206 239
-22 143 210 235 129
-23 135 201 217 239
-24 165 134 191 126
-25 190 128 161 218
-26 189 135 157 140
-27 155 190 203 205
-28 210 211 151 153
-29 181 162 174 131
-30 133 221 227 219
-31 121 165 177 146
-32 144 194 207 186
-33 200 130 153 230
-34 222 137 170 236
-35 122 167 140 240
-36 209 158 170 160
-37 132 168 212 171
-38 159 214 138 197
-39 231 134 183 130
-40 125 215 226 152
-41 191 171 217 141
-42 146 223 224 207
-43 199 156 212 237
-44 136 148 149 195
-45 122 166 204 128
-46 238 195 164 197
-47 187 233 240 131
-48 199 180 196 229
-49 123 138 172 196
-50 179 125 163 208
-51 182 226 237 175
-52 189 169 180 193
-53 125 225 217 164
-54 198 169 151 239
-55 143 199 159 181
-56 178 126 192 127
-57 178 202 227 186
-58 201 204 184 130
-59 202 224 204 152
-60 121 209 182 141
-61 124 139 184 229
-62 201 148 172 185
-63 121 198 221 152
-64 202 235 139 173
-65 143 209 224 239
-66 147 180 235 150
-67 233 168 218 175
-68 154 176 155 145
-69 211 137 149 150
-70 166 173 174 230
-71 236 226 207 219
-72 167 200 147 225
-73 220 231 124 236
-74 123 171 161 130
-75 133 179 214 128
-76 213 215 205 206
-77 187 210 189 171
-78 200 223 191 160
-79 199 151 141 142
-80 169 181 204 195
-81 176 122 227 175
-82 132 232 179 185
-83 146 213 237 185
-84 155 138 193 162
-85 231 178 160 174
-86 182 194 229 240
-87 212 125 169 137
-88 143 178 157 163
-89 177 222 172 142
-90 224 205 228 131
-91 220 148 193 206
-92 221 161 195 142
-93 176 177 157 212
-94 147 194 238 228
-95 166 192 183 197
-96 202 159 182 161
-97 124 136 129 217
-98 198 126 203 238
-99 154 188 136 163
-100 156 214 225 139
-101 165 150 205 140
-102 144 213 164 230
-103 188 137 196 175
-104 134 233 129 186
-105 166 123 135 208
-106 198 136 213 160
-107 158 126 138 149
-108 191 184 206 218
-109 168 172 174 207
-110 132 154 192 236
-111 145 179 147 216
-112 187 231 225 185
-113 155 167 124 234
-114 150 183 162 142
-115 133 211 157 173
-116 156 189 215 194
-117 232 211 226 238
-118 234 180 170 186
-119 154 158 128 229
-120 123 203 237 216
-121 60 19 63 31
-122 45 35 81 21
-123 49 105 74 120
-124 113 61 73 97
-125 50 40 53 87
-126 56 24 107 98
-127 56 4 10 21
-128 45 25 75 119
-129 22 5 104 97
-130 33 58 39 74
-131 12 90 47 29
-132 110 12 37 82
-133 13 115 30 75
-134 24 104 39 7
-135 12 23 26 105
-136 44 99 106 97
-137 34 69 103 87
-138 38 49 84 107
-139 100 17 61 64
-140 35 101 26 9
-141 79 60 41 10
-142 89 79 92 114
-143 22 55 88 65
-144 102 16 20 32
-145 11 111 68 4
-146 83 8 31 42
-147 66 111 72 94
-148 44 91 18 62
-149 44 2 69 107
-150 66 101 69 114
-151 79 28 7 54
-152 15 59 40 63
-153 11 33 17 28
-154 99 110 68 119
-155 68 113 27 84
-156 100 5 116 43
-157 88 26 93 115
-158 36 5 107 119
-159 55 38 18 96
-160 78 36 106 85
-161 25 92 74 96
-162 114 6 29 84
-163 88 99 50 7
-164 13 46 102 53
-165 11 24 101 31
-166 45 70 105 95
-167 35 14 113 72
-168 67 37 19 109
-169 80 52 54 87
-170 34 36 18 118
-171 77 37 41 74
-172 89 49 62 109
-173 4 70 115 64
-174 70 29 85 109
-175 67 81 103 51
-176 68 3 81 93
-177 89 14 93 31
-178 88 56 57 85
-179 111 82 50 75
-180 66 48 52 118
-181 55 80 29 9
-182 60 51 96 86
-183 114 39 95 19
-184 13 58 61 108
-185 112 82 83 62
-186 57 104 118 32
-187 77 1 112 47
-188 99 13 15 103
-189 77 26 116 52
-190 25 27 8 10
-191 78 24 41 108
-192 110 1 56 95
-193 91 15 84 52
-194 94 116 86 32
-195 44 46 80 92
-196 48 103 49 8
-197 11 46 38 95
-198 106 63 54 98
-199 55 79 48 43
-200 33 78 3 72
-201 23 58 6 62
-202 57 59 96 64
-203 16 27 98 120
-204 45 58 80 59
-205 90 101 27 76
-206 91 108 21 76
-207 71 42 32 109
-208 5 50 105 10
-209 36 16 60 65
-210 22 77 14 28
-211 69 115 28 117
-212 37 93 43 87
-213 102 83 106 76
-214 100 16 38 75
-215 6 116 40 76
-216 1 111 6 120
-217 23 41 53 97
-218 67 14 25 108
-219 2 71 7 30
-220 3 91 73 8
-221 92 17 30 63
-222 34 89 9 20
-223 78 4 9 42
-224 90 59 42 65
-225 100 112 72 53
-226 71 40 51 117
-227 12 57 81 30
-228 2 90 94 19
-229 48 61 86 119
-230 33 102 70 18
-231 112 39 73 85
-232 3 82 117 20
-233 67 47 104 17
-234 1 2 113 118
-235 22 66 20 64
-236 110 34 71 73
-237 83 51 43 120
-238 46 94 117 98
-239 23 21 54 65
-240 35 47 15 86
0