[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 168 ] =
BGCG(UG(ATD[120,10]);K1;{22,23}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {113, 126}, {105, 121}, {111, 126}, {101, 124}, {96, 125}, {98,
125}, {88, 122}, {89, 124}, {87, 127}, {85, 123}, {75, 126}, {65, 122}, {57,
123}, {63, 125}, {58, 121}, {61, 126}, {60, 127}, {63, 122}, {54, 127}, {50,
121}, {51, 127}, {49, 124}, {33, 123}, {38, 125}, {30, 122}, {27, 124}, {17,
123}, {13, 121}, {30, 158}, {69, 197}, {29, 156}, {58, 187}, {80, 210}, {88,
218}, {10, 137}, {115, 240}, {51, 176}, {91, 216}, {111, 236}, {1, 133}, {23,
147}, {29, 152}, {62, 187}, {18, 148}, {28, 154}, {44, 170}, {78, 200}, {9,
142}, {77, 202}, {72, 207}, {36, 163}, {80, 215}, {32, 168}, {87, 223}, {89,
209}, {110, 230}, {25, 144}, {75, 194}, {67, 202}, {64, 201}, {26, 147}, {45,
164}, {39, 173}, {42, 160}, {38, 170}, {12, 129}, {53, 184}, {18, 159}, {33,
172}, {50, 191}, {51, 190}, {83, 222}, {48, 190}, {74, 196}, {85, 219}, {94,
208}, {103, 233}, {8, 135}, {70, 201}, {44, 163}, {101, 234}, {42, 186}, {94,
206}, {34, 179}, {55, 166}, {53, 164}, {77, 220}, {82, 195}, {92, 205}, {79,
221}, {115, 225}, {13, 158}, {32, 179}, {95, 204}, {113, 226}, {26, 142}, {120,
236}, {118, 226}, {90, 206}, {26, 143}, {35, 182}, {18, 132}, {120, 238}, {10,
157}, {11, 156}, {37, 178}, {5, 157}, {31, 135}, {92, 196}, {15, 150}, {116,
237}, {64, 217}, {16, 138}, {64, 218}, {60, 166}, {32, 186}, {47, 181}, {49,
171}, {52, 174}, {92, 199}, {11, 151}, {29, 129}, {36, 184}, {14, 147}, {52,
169}, {79, 210}, {82, 207}, {6, 152}, {71, 217}, {113, 239}, {45, 178}, {112,
239}, {47, 143}, {61, 157}, {34, 131}, {116, 213}, {55, 150}, {104, 201}, {25,
187}, {67, 225}, {54, 148}, {99, 193}, {12, 175}, {117, 214}, {55, 148}, {102,
197}, {3, 167}, {68, 224}, {40, 140}, {25, 188}, {76, 233}, {40, 141}, {105,
204}, {110, 203}, {115, 214}, {11, 173}, {118, 208}, {34, 132}, {48, 150}, {22,
177}, {56, 159}, {78, 230}, {119, 223}, {21, 188}, {67, 234}, {2, 168}, {31,
181}, {46, 132}, {47, 133}, {37, 142}, {107, 192}, {53, 153}, {1, 172}, {59,
150}, {45, 128}, {39, 137}, {77, 227}, {9, 166}, {14, 161}, {52, 155}, {9, 185},
{43, 155}, {99, 211}, {36, 149}, {61, 140}, {56, 137}, {100, 213}, {115, 194},
{6, 180}, {42, 152}, {82, 224}, {98, 208}, {102, 212}, {2, 177}, {8, 187}, {23,
164}, {38, 149}, {83, 224}, {86, 229}, {26, 174}, {103, 211}, {1, 180}, {7,
177}, {117, 195}, {25, 175}, {98, 212}, {109, 219}, {21, 162}, {119, 192}, {16,
168}, {62, 134}, {102, 222}, {4, 189}, {59, 130}, {15, 182}, {28, 165}, {31,
166}, {41, 144}, {46, 151}, {52, 141}, {53, 140}, {98, 216}, {113, 203}, {14,
181}, {84, 239}, {93, 225}, {4, 185}, {5, 184}, {28, 161}, {100, 218}, {116,
202}, {15, 176}, {30, 161}, {88, 231}, {37, 229}, {119, 183}, {85, 149}, {2,
195}, {68, 133}, {66, 131}, {14, 207}, {40, 233}, {1, 195}, {4, 198}, {19, 209},
{111, 173}, {24, 219}, {74, 137}, {27, 216}, {107, 168}, {19, 215}, {31, 219},
{84, 145}, {7, 193}, {70, 128}, {105, 175}, {5, 194}, {9, 206}, {12, 203}, {30,
217}, {108, 171}, {118, 190}, {21, 220}, {35, 234}, {45, 228}, {96, 169}, {99,
170}, {103, 174}, {29, 215}, {76, 134}, {73, 131}, {47, 229}, {95, 149}, {72,
131}, {83, 152}, {105, 162}, {114, 185}, {24, 212}, {13, 192}, {20, 217}, {104,
165}, {43, 229}, {69, 139}, {78, 128}, {66, 141}, {71, 136}, {84, 155}, {17,
193}, {62, 238}, {59, 235}, {20, 197}, {62, 239}, {22, 199}, {57, 235}, {2,
209}, {118, 165}, {21, 198}, {23, 196}, {84, 135}, {100, 183}, {22, 194}, {24,
204}, {81, 133}, {103, 179}, {71, 146}, {79, 154}, {94, 139}, {5, 211}, {17,
199}, {94, 136}, {69, 146}, {88, 143}, {112, 167}, {13, 213}, {60, 228}, {89,
129}, {90, 130}, {70, 159}, {78, 151}, {15, 213}, {120, 162}, {70, 156}, {64,
154}, {57, 227}, {20, 206}, {86, 140}, {19, 200}, {49, 237}, {87, 139}, {90,
134}, {93, 129}, {96, 188}, {16, 205}, {76, 145}, {54, 235}, {48, 237}, {112,
173}, {56, 230}, {92, 130}, {97, 191}, {102, 184}, {56, 231}, {59, 228}, {101,
186}, {69, 165}, {106, 138}, {114, 146}, {3, 226}, {75, 170}, {74, 171}, {65,
160}, {8, 233}, {87, 182}, {10, 232}, {65, 163}, {63, 221}, {42, 200}, {46,
205}, {120, 155}, {81, 178}, {83, 176}, {109, 142}, {8, 236}, {72, 172}, {3,
230}, {41, 204}, {86, 179}, {95, 185}, {110, 136}, {33, 198}, {119, 144}, {104,
143}, {111, 136}, {24, 240}, {63, 215}, {58, 210}, {35, 203}, {50, 218}, {85,
189}, {44, 197}, {112, 153}, {37, 207}, {77, 167}, {6, 237}, {91, 176}, {93,
182}, {97, 138}, {109, 134}, {7, 235}, {67, 175}, {11, 231}, {108, 128}, {50,
223}, {82, 191}, {6, 232}, {76, 162}, {10, 228}, {39, 201}, {46, 192}, {100,
138}, {3, 236}, {75, 164}, {57, 214}, {12, 227}, {39, 200}, {48, 223}, {49,
222}, {79, 160}, {90, 181}, {91, 180}, {17, 225}, {55, 199}, {81, 161}, {91,
171}, {114, 130}, {60, 205}, {117, 132}, {97, 144}, {108, 157}, {54, 196}, {27,
232}, {68, 183}, {66, 177}, {34, 209}, {80, 163}, {95, 172}, {4, 240}, {73,
189}, {36, 208}, {44, 216}, {107, 159}, {22, 227}, {33, 212}, {40, 221}, {41,
220}, {114, 135}, {20, 226}, {73, 191}, {32, 214}, {43, 221}, {104, 158}, {7,
240}, {110, 153}, {38, 222}, {117, 141}, {74, 178}, {66, 186}, {43, 211}, {19,
234}, {71, 190}, {68, 189}, {51, 202}, {80, 169}, {89, 160}, {101, 156}, {93,
167}, {96, 154}, {99, 153}, {107, 145}, {27, 224}, {28, 231}, {41, 210}, {106,
145}, {18, 238}, {61, 193}, {58, 198}, {65, 188}, {73, 180}, {106, 151}, {16,
238}, {106, 148}, {23, 232}, {116, 139}, {72, 183}, {35, 220}, {81, 174}, {86,
169}, {97, 158}, {108, 147}, {109, 146} }>;
(II) A more general form is to represent the graph as the orbit of {113, 126}
under the group generated by the following permutations:
a: (1, 2, 19, 39, 104, 47)(3, 20, 9, 4, 115, 93)(5, 15, 120, 44, 60, 58)(6, 107,
63, 74, 97, 86)(7, 67, 112, 118, 90, 95)(8, 102, 55, 21, 75, 87)(10, 13, 43, 91,
16, 80)(11, 28, 14, 72, 66, 101)(12, 110, 71, 109, 85, 57)(17, 77, 113, 94, 114,
24)(18, 65, 45, 50, 103, 83)(22, 35, 111, 69, 31, 33)(23, 119, 40, 49, 106,
96)(25, 53, 48, 76, 38, 54)(26, 68, 117, 89, 78, 64)(27, 46, 79, 108, 100,
52)(29, 56, 30, 37, 73, 32)(34, 42, 70, 88, 81, 82)(36, 59, 105, 99, 51, 62)(41,
61, 116, 84, 98, 92)(121, 211, 176, 238, 163, 228)(122, 178, 191, 179, 152,
159)(123, 227, 203, 136, 146, 219)(124, 151, 154, 147, 183, 141)(125, 196, 144,
140, 237, 145)(126, 139, 135, 212, 199, 220)(127, 187, 184, 150, 162, 170)(128,
218, 174, 224, 132, 160)(129, 230, 217, 142, 189, 214)(130, 204, 193, 202, 239,
208)(131, 186, 156, 231, 161, 207)(133, 195, 209, 200, 201, 143)(134, 149, 235,
175, 153, 190)(137, 158, 229, 180, 168, 215)(138, 169, 232, 192, 221, 171)(148,
188, 164, 223, 233, 222)(155, 216, 205, 210, 157, 213)(165, 181, 172, 177, 234,
173)(166, 198, 194, 182, 236, 197)(167, 226, 206, 185, 240, 225) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 95, 6, 47)(4, 83, 14, 34)(7, 38, 23, 86)(8, 93, 20, 78)(9, 42, 31,
89)(10, 43, 22, 36)(11, 62, 35, 71)(12, 94, 39, 84)(15, 30, 46, 58)(16, 41, 48,
88)(17, 44, 45, 40)(18, 21, 51, 28)(19, 114, 29, 90)(24, 49, 26, 32)(25, 87, 64,
106)(27, 37, 66, 85)(33, 91, 81, 117)(50, 100, 97, 119)(52, 57, 98, 74)(53, 61,
99, 75)(54, 96)(55, 65, 60, 79)(56, 120, 77, 118)(59, 63, 92, 80)(67, 69, 70,
76)(68, 82, 72, 73)(101, 109)(102, 108, 103, 115)(104, 107, 105, 116)(110, 111,
112, 113)(121, 213, 158, 192)(122, 205, 210, 150)(123, 216, 178, 141)(124, 142,
186, 219)(125, 196, 169, 235)(126, 153)(127, 154, 148, 188)(128, 233, 225,
197)(129, 206, 200, 135)(130, 215)(131, 189, 224, 207)(132, 198, 176, 161)(133,
195, 172, 180)(134, 234, 146, 156)(136, 173, 239, 203)(137, 155, 227, 208)(138,
144, 223, 218)(139, 201, 145, 175)(140, 193, 170, 164)(143, 168, 204, 237)(147,
179, 240, 222)(149, 232, 229, 177)(151, 187, 182, 217)(152, 181, 209, 185)(157,
211, 194, 184)(159, 162, 202, 165)(160, 166)(163, 228, 221, 199)(167, 226, 230,
236)(171, 174, 214, 212)(183, 191)(190, 231, 238, 220)
c: (2, 6)(4, 14)(7, 23)(8, 20)(9, 31)(10, 22)(11, 35)(12, 39)(15, 46)(16,
48)(17, 45)(18, 51)(19, 29)(21, 28)(24, 26)(25, 64)(27, 66)(30, 58)(32, 49)(33,
81)(34, 83)(36, 43)(37, 85)(38, 86)(40, 44)(41, 88)(42, 89)(47, 95)(50, 97)(52,
98)(53, 99)(55, 60)(56, 77)(57, 74)(59, 92)(61, 75)(62, 71)(63, 80)(65, 79)(67,
70)(68, 72)(69, 76)(73, 82)(78, 93)(84, 94)(87, 106)(90, 114)(91, 117)(100,
119)(102, 103)(104, 105)(107, 116)(108, 115)(110, 112)(111, 113)(118, 120)(121,
158)(122, 210)(123, 178)(124, 186)(125, 169)(127, 148)(128, 225)(129, 200)(131,
224)(132, 176)(133, 172)(134, 146)(135, 206)(136, 239)(137, 227)(138, 223)(139,
145)(140, 170)(141, 216)(142, 219)(143, 204)(144, 218)(147, 240)(149, 229)(150,
205)(151, 182)(152, 209)(154, 188)(155, 208)(156, 234)(157, 194)(159, 202)(161,
198)(162, 165)(163, 221)(164, 193)(167, 230)(168, 237)(171, 214)(173, 203)(174,
212)(175, 201)(177, 232)(179, 222)(180, 195)(181, 185)(184, 211)(187, 217)(189,
207)(190, 238)(192, 213)(196, 235)(197, 233)(199, 228)(220, 231)(226, 236)
C4[ 240, 168 ]
240
-1 133 180 172 195
-2 209 177 168 195
-3 167 236 226 230
-4 198 189 185 240
-5 211 157 194 184
-6 232 180 237 152
-7 177 235 193 240
-8 187 233 135 236
-9 166 206 185 142
-10 232 157 137 228
-11 231 156 151 173
-12 203 227 129 175
-13 121 158 213 192
-14 147 181 161 207
-15 176 213 182 150
-16 168 138 205 238
-17 199 123 225 193
-18 132 148 159 238
-19 209 200 234 215
-20 226 206 217 197
-21 198 220 188 162
-22 177 199 194 227
-23 232 147 196 164
-24 212 204 240 219
-25 187 144 188 175
-26 143 147 174 142
-27 232 124 224 216
-28 154 165 231 161
-29 156 215 129 152
-30 122 158 161 217
-31 166 135 181 219
-32 168 179 214 186
-33 198 123 212 172
-34 132 209 179 131
-35 220 234 203 182
-36 149 184 163 208
-37 178 207 229 142
-38 222 125 170 149
-39 200 201 137 173
-40 221 233 140 141
-41 220 144 210 204
-42 200 160 152 186
-43 155 221 211 229
-44 170 216 163 197
-45 178 128 228 164
-46 132 192 205 151
-47 143 133 181 229
-48 190 223 237 150
-49 222 124 171 237
-50 121 223 191 218
-51 176 190 202 127
-52 155 169 141 174
-53 140 184 153 164
-54 235 148 127 196
-55 166 199 148 150
-56 231 137 159 230
-57 123 235 214 227
-58 121 187 198 210
-59 235 150 228 130
-60 166 127 205 228
-61 157 126 193 140
-62 187 134 238 239
-63 122 221 125 215
-64 154 201 217 218
-65 122 188 160 163
-66 177 141 131 186
-67 234 202 225 175
-68 133 189 224 183
-69 165 146 139 197
-70 156 201 159 128
-71 146 190 136 217
-72 172 183 207 131
-73 189 180 191 131
-74 178 137 171 196
-75 126 170 194 164
-76 134 145 233 162
-77 220 167 202 227
-78 200 128 151 230
-79 154 210 221 160
-80 210 169 215 163
-81 133 178 161 174
-82 191 224 195 207
-83 176 222 224 152
-84 155 145 135 239
-85 123 189 149 219
-86 179 169 140 229
-87 223 127 182 139
-88 143 231 122 218
-89 209 124 160 129
-90 134 181 206 130
-91 176 180 171 216
-92 199 205 130 196
-93 167 225 182 129
-94 136 139 206 208
-95 149 204 172 185
-96 154 188 125 169
-97 144 158 191 138
-98 212 125 216 208
-99 211 170 193 153
-100 213 138 183 218
-101 156 124 234 186
-102 222 212 184 197
-103 211 233 179 174
-104 143 165 201 158
-105 121 204 162 175
-106 145 148 138 151
-107 145 168 159 192
-108 157 147 171 128
-109 134 146 142 219
-110 136 203 153 230
-111 136 126 236 173
-112 167 173 239 153
-113 126 203 226 239
-114 135 146 130 185
-115 214 225 194 240
-116 202 213 237 139
-117 132 214 195 141
-118 165 190 226 208
-119 144 223 192 183
-120 155 236 238 162
-121 13 58 50 105
-122 88 30 63 65
-123 33 57 17 85
-124 89 101 27 49
-125 38 63 96 98
-126 111 113 61 75
-127 60 51 54 87
-128 45 78 70 108
-129 12 89 93 29
-130 90 59 92 114
-131 66 34 72 73
-132 34 46 18 117
-133 1 68 47 81
-134 90 62 76 109
-135 114 84 8 31
-136 110 111 71 94
-137 56 39 74 10
-138 100 16 106 97
-139 69 94 116 87
-140 61 40 53 86
-141 66 40 117 52
-142 26 37 9 109
-143 88 47 26 104
-144 25 41 97 119
-145 84 106 107 76
-146 69 114 71 109
-147 23 14 26 108
-148 55 18 106 54
-149 36 38 95 85
-150 55 15 48 59
-151 11 78 46 106
-152 6 83 29 42
-153 99 110 112 53
-154 79 28 96 64
-155 84 52 43 120
-156 11 101 70 29
-157 5 61 108 10
-158 13 104 30 97
-159 56 70 18 107
-160 89 79 42 65
-161 14 81 28 30
-162 105 21 76 120
-163 44 36 80 65
-164 23 45 53 75
-165 69 104 28 118
-166 55 60 9 31
-167 77 112 3 93
-168 2 16 107 32
-169 80 52 96 86
-170 44 99 38 75
-171 91 49 74 108
-172 33 1 72 95
-173 11 111 112 39
-174 26 81 103 52
-175 12 67 25 105
-176 91 15 83 51
-177 22 66 2 7
-178 45 37 81 74
-179 34 103 86 32
-180 1 91 6 73
-181 90 14 47 31
-182 35 15 93 87
-183 100 68 72 119
-184 36 102 5 53
-185 4 114 95 9
-186 66 101 42 32
-187 25 58 62 8
-188 25 96 21 65
-189 68 4 73 85
-190 48 71 51 118
-191 82 50 73 97
-192 13 46 107 119
-193 99 17 61 7
-194 22 5 115 75
-195 1 2 82 117
-196 23 92 74 54
-197 44 69 102 20
-198 33 58 4 21
-199 22 55 92 17
-200 78 39 19 42
-201 70 104 39 64
-202 77 67 116 51
-203 110 12 35 113
-204 24 105 95 41
-205 46 92 16 60
-206 90 94 9 20
-207 14 37 82 72
-208 36 94 118 98
-209 34 89 2 19
-210 79 58 80 41
-211 99 103 5 43
-212 33 24 102 98
-213 100 13 15 116
-214 57 115 117 32
-215 80 29 19 63
-216 44 91 27 98
-217 71 30 20 64
-218 88 100 50 64
-219 24 85 31 109
-220 77 35 41 21
-221 79 40 63 43
-222 102 38 49 83
-223 48 50 119 87
-224 68 27 82 83
-225 67 93 115 17
-226 3 113 118 20
-227 22 77 12 57
-228 45 59 60 10
-229 47 37 86 43
-230 110 56 78 3
-231 11 88 56 28
-232 23 27 6 10
-233 103 40 8 76
-234 67 35 101 19
-235 57 59 7 54
-236 111 3 8 120
-237 48 49 6 116
-238 16 18 62 120
-239 112 113 62 84
-240 24 4 115 7
0