C4graphGraph forms for C4 [ 240, 169 ] = BGCG(UG(ATD[120,10]);K1;{26,27})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 169 ] = BGCG(UG(ATD[120,10]);K1;{26,27}).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {115, 126}, {118, 123}, {105, 121}, {106, 124}, {98, 125}, {93, 126}, {91, 127}, {82, 122}, {86, 124}, {76, 124}, {79, 121}, {63, 125}, {59, 125}, {50, 122}, {55, 126}, {48, 123}, {50, 121}, {48, 126}, {45, 125}, {44, 127}, {32, 124}, {36, 122}, {31, 127}, {28, 121}, {19, 123}, {8, 127}, {2, 123}, {5, 122}, {4, 132}, {26, 154}, {83, 211}, {33, 160}, {82, 211}, {25, 155}, {64, 194}, {50, 176}, {54, 180}, {105, 235}, {108, 238}, {4, 135}, {61, 190}, {58, 185}, {8, 139}, {29, 153}, {70, 194}, {56, 188}, {96, 228}, {39, 162}, {85, 208}, {100, 225}, {30, 152}, {72, 206}, {17, 150}, {66, 197}, {32, 167}, {41, 174}, {28, 148}, {71, 207}, {35, 171}, {45, 165}, {23, 158}, {73, 192}, {63, 182}, {59, 178}, {37, 172}, {47, 166}, {24, 146}, {76, 198}, {54, 188}, {79, 197}, {49, 186}, {90, 209}, {5, 137}, {65, 205}, {11, 135}, {106, 230}, {23, 154}, {31, 146}, {40, 166}, {55, 185}, {84, 218}, {27, 139}, {119, 231}, {73, 217}, {40, 184}, {96, 240}, {114, 226}, {20, 133}, {24, 137}, {81, 192}, {10, 152}, {21, 135}, {22, 132}, {41, 187}, {86, 196}, {50, 161}, {120, 235}, {60, 175}, {95, 204}, {21, 129}, {73, 221}, {70, 210}, {53, 161}, {113, 229}, {31, 138}, {115, 230}, {67, 214}, {3, 149}, {39, 177}, {92, 202}, {102, 240}, {114, 228}, {27, 140}, {120, 239}, {72, 223}, {47, 183}, {67, 219}, {3, 154}, {70, 223}, {63, 166}, {112, 233}, {1, 155}, {118, 236}, {14, 148}, {89, 195}, {11, 144}, {71, 220}, {15, 148}, {91, 192}, {69, 217}, {116, 232}, {75, 215}, {90, 198}, {8, 149}, {52, 169}, {83, 206}, {85, 200}, {95, 194}, {42, 180}, {57, 167}, {54, 168}, {82, 204}, {93, 195}, {14, 145}, {76, 211}, {18, 141}, {22, 137}, {53, 170}, {38, 134}, {101, 197}, {106, 203}, {117, 212}, {19, 177}, {29, 191}, {35, 129}, {52, 150}, {14, 173}, {68, 231}, {67, 224}, {27, 184}, {25, 189}, {68, 224}, {60, 152}, {56, 156}, {41, 141}, {77, 233}, {107, 207}, {19, 182}, {77, 232}, {72, 237}, {39, 130}, {45, 136}, {104, 205}, {109, 200}, {112, 213}, {23, 177}, {36, 130}, {63, 152}, {69, 226}, {109, 202}, {36, 140}, {69, 237}, {61, 149}, {43, 131}, {53, 157}, {78, 230}, {46, 135}, {119, 222}, {56, 146}, {58, 144}, {97, 203}, {100, 206}, {23, 188}, {72, 227}, {53, 158}, {78, 229}, {97, 205}, {111, 195}, {24, 181}, {34, 143}, {46, 131}, {105, 196}, {17, 190}, {66, 237}, {22, 185}, {1, 176}, {17, 160}, {33, 144}, {48, 129}, {52, 133}, {81, 224}, {96, 209}, {107, 218}, {7, 181}, {60, 142}, {31, 173}, {86, 228}, {110, 220}, {12, 191}, {116, 199}, {44, 159}, {99, 208}, {9, 189}, {39, 147}, {47, 155}, {8, 189}, {30, 171}, {38, 147}, {40, 157}, {3, 181}, {60, 138}, {6, 176}, {110, 216}, {6, 177}, {35, 148}, {49, 134}, {91, 236}, {7, 191}, {37, 157}, {83, 235}, {92, 228}, {113, 201}, {4, 189}, {20, 173}, {49, 136}, {22, 172}, {55, 141}, {88, 226}, {34, 153}, {15, 179}, {30, 162}, {97, 221}, {2, 191}, {15, 178}, {51, 142}, {99, 222}, {13, 179}, {114, 204}, {16, 175}, {18, 210}, {68, 132}, {64, 128}, {20, 212}, {95, 159}, {6, 199}, {42, 235}, {44, 237}, {100, 165}, {109, 172}, {10, 200}, {29, 223}, {79, 141}, {106, 168}, {1, 194}, {120, 187}, {69, 134}, {20, 215}, {84, 151}, {86, 149}, {108, 175}, {13, 201}, {88, 156}, {28, 217}, {34, 231}, {21, 211}, {66, 132}, {35, 229}, {80, 150}, {87, 145}, {17, 214}, {66, 133}, {25, 222}, {93, 154}, {102, 161}, {110, 169}, {11, 195}, {74, 130}, {12, 196}, {36, 236}, {98, 170}, {111, 167}, {2, 203}, {119, 190}, {80, 153}, {103, 174}, {1, 203}, {92, 150}, {99, 169}, {113, 186}, {16, 220}, {30, 210}, {91, 151}, {93, 145}, {95, 147}, {2, 207}, {65, 140}, {12, 193}, {99, 174}, {70, 136}, {101, 171}, {104, 166}, {42, 229}, {65, 142}, {80, 159}, {97, 174}, {102, 182}, {115, 163}, {33, 240}, {116, 165}, {81, 128}, {87, 134}, {89, 136}, {112, 162}, {9, 218}, {61, 238}, {3, 215}, {12, 216}, {94, 138}, {111, 187}, {18, 199}, {117, 160}, {59, 238}, {107, 190}, {13, 219}, {117, 163}, {88, 142}, {89, 143}, {57, 238}, {115, 164}, {74, 157}, {85, 130}, {107, 188}, {5, 221}, {67, 155}, {21, 205}, {7, 222}, {112, 170}, {111, 179}, {9, 212}, {24, 198}, {64, 158}, {52, 234}, {54, 232}, {13, 210}, {109, 178}, {9, 233}, {10, 234}, {96, 128}, {58, 219}, {77, 172}, {78, 175}, {4, 230}, {58, 216}, {85, 183}, {15, 236}, {87, 180}, {102, 133}, {37, 193}, {46, 202}, {49, 213}, {48, 213}, {71, 162}, {83, 182}, {114, 151}, {62, 216}, {46, 201}, {79, 168}, {87, 176}, {103, 128}, {104, 143}, {51, 219}, {6, 239}, {57, 208}, {10, 227}, {25, 240}, {37, 204}, {80, 185}, {98, 139}, {101, 140}, {11, 225}, {118, 156}, {59, 209}, {43, 193}, {47, 196}, {62, 213}, {98, 137}, {103, 139}, {14, 227}, {64, 173}, {55, 218}, {45, 192}, {90, 183}, {113, 156}, {43, 197}, {75, 165}, {74, 164}, {84, 186}, {5, 234}, {75, 164}, {7, 232}, {41, 198}, {26, 234}, {74, 186}, {56, 200}, {16, 225}, {38, 215}, {89, 168}, {29, 239}, {82, 160}, {19, 224}, {26, 233}, {61, 201}, {76, 184}, {62, 202}, {94, 170}, {18, 231}, {71, 178}, {65, 180}, {101, 144}, {32, 214}, {119, 129}, {117, 131}, {77, 187}, {43, 221}, {105, 159}, {38, 209}, {26, 226}, {75, 179}, {57, 193}, {27, 227}, {92, 164}, {62, 199}, {118, 143}, {88, 161}, {90, 163}, {94, 167}, {81, 171}, {100, 158}, {34, 217}, {120, 131}, {78, 181}, {104, 147}, {108, 151}, {32, 220}, {68, 184}, {40, 212}, {42, 214}, {44, 208}, {51, 207}, {110, 146}, {28, 225}, {51, 206}, {84, 169}, {94, 163}, {108, 145}, {33, 223}, {116, 138}, {73, 183}, {103, 153}, {16, 239} }>;

(II) A more general form is to represent the graph as the orbit of {115, 126} under the group generated by the following permutations:

a: (1, 2)(3, 85)(4, 43)(5, 115)(6, 19)(7, 47)(8, 57)(9, 37)(10, 75)(11, 101)(12, 25)(13, 72)(14, 15)(16, 81)(17, 80)(18, 83)(20, 109)(21, 79)(22, 117)(23, 39)(24, 90)(26, 74)(27, 111)(28, 35)(29, 67)(30, 100)(31, 59)(32, 103)(33, 58)(34, 42)(36, 93)(38, 56)(40, 77)(41, 76)(44, 61)(45, 60)(46, 66)(48, 50)(49, 88)(51, 70)(52, 92)(53, 112)(54, 104)(55, 82)(62, 102)(63, 116)(64, 71)(65, 89)(68, 120)(69, 113)(73, 78)(84, 114)(86, 99)(87, 118)(91, 108)(94, 98)(95, 107)(96, 110)(97, 106)(105, 119)(121, 129)(122, 126)(123, 176)(124, 174)(125, 138)(127, 238)(128, 220)(130, 154)(131, 132)(133, 202)(134, 156)(135, 197)(136, 142)(137, 163)(139, 167)(140, 195)(141, 211)(143, 180)(145, 236)(146, 209)(147, 188)(149, 208)(152, 165)(153, 214)(155, 191)(157, 233)(158, 162)(159, 190)(160, 185)(161, 213)(164, 234)(166, 232)(168, 205)(169, 228)(171, 225)(172, 212)(173, 178)(175, 192)(179, 227)(181, 183)(182, 199)(184, 187)(186, 226)(189, 193)(194, 207)(196, 222)(200, 215)(201, 237)(204, 218)(206, 210)(216, 240)(217, 229)(219, 223)(221, 230)(224, 239)(231, 235)
b: (2, 95)(4, 14)(5, 13)(6, 47)(7, 38)(8, 93)(9, 108)(10, 46)(11, 27)(12, 39)(15, 22)(16, 40)(17, 88)(18, 73)(19, 105)(20, 78)(21, 72)(23, 86)(24, 75)(25, 87)(26, 61)(28, 68)(29, 104)(30, 43)(31, 115)(32, 53)(33, 65)(35, 66)(36, 58)(37, 71)(41, 45)(42, 102)(44, 48)(49, 99)(50, 67)(51, 82)(52, 113)(54, 96)(55, 91)(56, 92)(57, 112)(59, 77)(60, 117)(62, 85)(63, 120)(64, 106)(69, 119)(70, 97)(74, 110)(76, 100)(79, 81)(80, 118)(89, 103)(90, 116)(98, 111)(107, 114)(121, 224)(122, 219)(123, 159)(124, 158)(125, 187)(126, 127)(128, 168)(129, 237)(130, 216)(131, 152)(132, 148)(133, 229)(134, 222)(135, 227)(136, 174)(137, 179)(138, 163)(139, 195)(140, 144)(141, 192)(142, 160)(143, 153)(145, 189)(146, 164)(147, 191)(149, 154)(150, 156)(151, 218)(155, 176)(157, 220)(161, 214)(162, 193)(165, 198)(166, 239)(167, 170)(169, 186)(171, 197)(172, 178)(173, 230)(175, 212)(177, 196)(180, 240)(181, 215)(182, 235)(183, 199)(184, 225)(185, 236)(188, 228)(190, 226)(194, 203)(200, 202)(201, 234)(204, 207)(205, 223)(206, 211)(208, 213)(209, 232)(210, 221)(217, 231)(233, 238)
c: (2, 47)(5, 13)(6, 95)(7, 86)(8, 78)(9, 115)(10, 15)(11, 66)(16, 44)(17, 41)(18, 82)(19, 104)(20, 93)(21, 68)(22, 46)(23, 38)(24, 61)(25, 106)(26, 75)(27, 35)(28, 72)(29, 105)(30, 36)(31, 108)(32, 99)(33, 79)(34, 83)(37, 62)(40, 48)(42, 103)(43, 58)(45, 88)(49, 53)(50, 70)(51, 73)(52, 111)(54, 96)(55, 117)(56, 59)(57, 110)(60, 91)(63, 118)(64, 87)(65, 81)(67, 97)(69, 100)(71, 85)(74, 112)(76, 119)(77, 92)(80, 120)(84, 94)(89, 102)(90, 107)(98, 113)(114, 116)(121, 223)(122, 210)(123, 166)(124, 222)(125, 156)(126, 212)(127, 175)(128, 180)(129, 184)(130, 162)(131, 185)(132, 135)(133, 195)(134, 158)(136, 161)(137, 201)(138, 151)(139, 229)(140, 171)(141, 160)(142, 192)(143, 182)(144, 197)(145, 173)(146, 238)(147, 177)(148, 227)(149, 181)(150, 187)(152, 236)(153, 235)(154, 215)(155, 203)(157, 213)(159, 239)(163, 218)(164, 233)(165, 226)(167, 169)(168, 240)(170, 186)(172, 202)(174, 214)(176, 194)(178, 200)(179, 234)(183, 207)(188, 209)(189, 230)(190, 198)(191, 196)(193, 216)(199, 204)(205, 224)(206, 217)(208, 220)(211, 231)(219, 221)(225, 237)(228, 232)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 169 ]
240
-1 176 155 203 194
-2 123 191 203 207
-3 154 181 149 215
-4 132 189 135 230
-5 122 221 234 137
-6 176 177 199 239
-7 232 222 191 181
-8 189 127 149 139
-9 189 233 212 218
-10 200 234 227 152
-11 144 135 225 195
-12 191 193 216 196
-13 210 179 201 219
-14 145 148 227 173
-15 178 179 148 236
-16 220 225 239 175
-17 190 214 160 150
-18 231 199 210 141
-19 177 123 224 182
-20 133 212 215 173
-21 211 135 205 129
-22 132 137 172 185
-23 154 177 188 158
-24 198 146 137 181
-25 155 189 222 240
-26 154 233 234 226
-27 139 227 140 184
-28 121 148 225 217
-29 223 191 239 153
-30 210 171 162 152
-31 146 127 138 173
-32 220 167 124 214
-33 144 223 160 240
-34 143 231 217 153
-35 148 171 129 229
-36 122 236 140 130
-37 157 193 204 172
-38 209 134 147 215
-39 177 147 162 130
-40 166 157 212 184
-41 187 198 141 174
-42 180 235 214 229
-43 221 193 131 197
-44 159 127 237 208
-45 165 125 136 192
-46 135 201 202 131
-47 155 166 183 196
-48 123 213 126 129
-49 134 136 213 186
-50 121 176 122 161
-51 206 207 142 219
-52 133 234 169 150
-53 157 158 170 161
-54 188 232 168 180
-55 126 141 185 218
-56 188 156 200 146
-57 167 193 238 208
-58 144 216 185 219
-59 209 178 125 238
-60 138 152 142 175
-61 190 201 149 238
-62 199 202 213 216
-63 166 125 182 152
-64 158 128 194 173
-65 180 205 140 142
-66 132 133 237 197
-67 155 224 214 219
-68 132 231 224 184
-69 134 226 237 217
-70 210 223 136 194
-71 220 178 162 207
-72 223 237 227 206
-73 221 192 183 217
-74 157 130 164 186
-75 165 179 215 164
-76 198 211 124 184
-77 187 232 233 172
-78 181 229 175 230
-79 121 168 141 197
-80 159 150 185 153
-81 224 192 171 128
-82 122 211 160 204
-83 211 235 182 206
-84 169 151 218 186
-85 200 183 130 208
-86 124 149 228 196
-87 176 134 145 180
-88 156 226 161 142
-89 143 168 136 195
-90 198 209 183 163
-91 192 236 127 151
-92 202 150 228 164
-93 154 145 126 195
-94 167 170 138 163
-95 147 159 204 194
-96 209 128 228 240
-97 221 203 205 174
-98 125 137 170 139
-99 222 169 174 208
-100 165 158 225 206
-101 144 171 140 197
-102 133 182 161 240
-103 128 139 174 153
-104 143 166 147 205
-105 121 235 159 196
-106 124 168 203 230
-107 188 190 207 218
-108 145 238 151 175
-109 178 200 202 172
-110 220 146 169 216
-111 187 167 179 195
-112 233 213 170 162
-113 156 201 229 186
-114 204 226 151 228
-115 126 163 164 230
-116 165 199 232 138
-117 212 160 163 131
-118 143 123 156 236
-119 231 222 190 129
-120 187 235 239 131
-121 79 28 50 105
-122 36 5 82 50
-123 2 48 19 118
-124 106 86 32 76
-125 45 59 63 98
-126 55 48 93 115
-127 44 91 8 31
-128 81 103 96 64
-129 35 48 119 21
-130 36 39 74 85
-131 46 117 43 120
-132 22 66 68 4
-133 66 102 52 20
-134 69 38 49 87
-135 11 46 4 21
-136 45 89 70 49
-137 22 24 5 98
-138 60 94 116 31
-139 103 27 8 98
-140 101 36 27 65
-141 55 79 18 41
-142 88 60 51 65
-143 34 89 104 118
-144 11 33 101 58
-145 14 93 108 87
-146 110 56 24 31
-147 38 104 39 95
-148 35 14 15 28
-149 3 61 8 86
-150 80 92 17 52
-151 91 114 84 108
-152 60 30 63 10
-153 34 80 103 29
-154 23 3 26 93
-155 1 67 25 47
-156 88 56 113 118
-157 37 40 74 53
-158 23 100 53 64
-159 44 80 105 95
-160 33 82 17 117
-161 88 102 50 53
-162 112 71 39 30
-163 90 115 94 117
-164 92 115 74 75
-165 45 100 116 75
-166 47 104 40 63
-167 111 57 94 32
-168 89 79 106 54
-169 99 110 84 52
-170 112 94 53 98
-171 35 101 81 30
-172 22 77 37 109
-173 14 20 31 64
-174 99 103 41 97
-175 78 16 60 108
-176 1 6 50 87
-177 23 6 39 19
-178 15 59 71 109
-179 111 13 15 75
-180 42 54 65 87
-181 78 24 3 7
-182 102 83 19 63
-183 90 47 73 85
-184 68 27 40 76
-185 22 55 58 80
-186 113 49 84 74
-187 77 111 41 120
-188 23 56 107 54
-189 25 4 8 9
-190 17 61 107 119
-191 12 2 7 29
-192 45 91 81 73
-193 12 57 37 43
-194 1 70 95 64
-195 11 89 111 93
-196 12 47 105 86
-197 66 79 101 43
-198 24 90 41 76
-199 6 116 18 62
-200 56 85 10 109
-201 13 46 113 61
-202 46 92 62 109
-203 1 2 106 97
-204 37 114 82 95
-205 104 97 21 65
-206 100 72 83 51
-207 2 71 51 107
-208 44 99 57 85
-209 90 59 38 96
-210 13 70 18 30
-211 82 83 21 76
-212 40 117 9 20
-213 112 48 49 62
-214 67 17 42 32
-215 3 38 20 75
-216 110 12 58 62
-217 34 69 28 73
-218 55 84 107 9
-219 67 13 58 51
-220 110 16 71 32
-221 5 73 97 43
-222 99 25 7 119
-223 33 70 72 29
-224 67 68 81 19
-225 11 100 16 28
-226 88 69 26 114
-227 14 27 72 10
-228 92 114 96 86
-229 78 35 113 42
-230 78 4 115 106
-231 34 68 18 119
-232 77 116 7 54
-233 77 112 26 9
-234 26 5 52 10
-235 83 105 42 120
-236 36 91 15 118
-237 44 66 69 72
-238 57 59 61 108
-239 16 6 29 120
-240 33 25 102 96
0

**************