C4graphGraph forms for C4 [ 240, 170 ] = BGCG(UG(ATD[120,10]);K1;28)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 170 ] = BGCG(UG(ATD[120,10]);K1;28).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {112, 127}, {111, 125}, {109, 121}, {98, 123}, {102, 121}, {90, 122}, {95, 125}, {94, 125}, {94, 123}, {87, 126}, {81, 123}, {83, 121}, {79, 126}, {71, 124}, {59, 122}, {63, 122}, {58, 124}, {62, 121}, {54, 126}, {51, 124}, {45, 123}, {41, 126}, {39, 127}, {33, 124}, {30, 122}, {6, 127}, {1, 125}, {1, 127}, {3, 130}, {8, 137}, {9, 136}, {31, 158}, {34, 163}, {97, 227}, {106, 232}, {111, 237}, {20, 151}, {39, 164}, {40, 171}, {46, 170}, {71, 194}, {88, 221}, {8, 142}, {44, 170}, {12, 132}, {69, 205}, {15, 135}, {17, 153}, {49, 185}, {19, 154}, {100, 237}, {105, 224}, {41, 163}, {74, 192}, {64, 202}, {50, 184}, {81, 219}, {97, 235}, {101, 239}, {111, 229}, {2, 137}, {60, 183}, {7, 140}, {42, 161}, {13, 129}, {70, 202}, {29, 145}, {89, 213}, {14, 131}, {57, 180}, {89, 212}, {7, 137}, {8, 134}, {51, 189}, {83, 221}, {41, 166}, {83, 220}, {17, 129}, {25, 137}, {28, 140}, {35, 179}, {50, 162}, {4, 149}, {70, 215}, {69, 212}, {25, 136}, {31, 142}, {32, 177}, {2, 144}, {84, 198}, {89, 203}, {50, 161}, {112, 227}, {3, 151}, {116, 224}, {63, 171}, {61, 169}, {57, 173}, {56, 172}, {16, 132}, {24, 140}, {92, 200}, {93, 201}, {36, 177}, {59, 173}, {76, 218}, {64, 214}, {93, 203}, {84, 195}, {52, 172}, {120, 224}, {70, 222}, {64, 216}, {80, 200}, {81, 201}, {84, 204}, {14, 151}, {119, 238}, {29, 132}, {105, 240}, {79, 213}, {87, 205}, {53, 174}, {9, 149}, {117, 233}, {115, 239}, {15, 147}, {20, 136}, {112, 236}, {18, 143}, {54, 171}, {32, 189}, {42, 183}, {46, 179}, {77, 208}, {109, 240}, {13, 147}, {71, 217}, {15, 145}, {91, 197}, {30, 129}, {76, 211}, {56, 167}, {43, 180}, {48, 175}, {25, 185}, {66, 226}, {53, 149}, {35, 131}, {16, 177}, {75, 234}, {68, 229}, {77, 236}, {96, 193}, {106, 203}, {28, 190}, {60, 158}, {108, 206}, {5, 166}, {74, 233}, {28, 191}, {31, 188}, {36, 135}, {24, 188}, {72, 236}, {35, 135}, {51, 150}, {72, 237}, {63, 154}, {10, 172}, {119, 209}, {65, 231}, {21, 179}, {104, 206}, {114, 212}, {13, 170}, {99, 196}, {107, 204}, {35, 139}, {73, 225}, {53, 157}, {63, 150}, {65, 232}, {101, 204}, {56, 146}, {76, 230}, {73, 227}, {60, 150}, {59, 145}, {97, 203}, {4, 175}, {29, 182}, {33, 138}, {7, 171}, {10, 166}, {26, 182}, {99, 207}, {5, 168}, {20, 186}, {75, 229}, {28, 178}, {103, 201}, {16, 191}, {59, 148}, {19, 188}, {78, 225}, {97, 206}, {88, 232}, {90, 234}, {1, 176}, {4, 181}, {14, 191}, {18, 163}, {90, 235}, {98, 211}, {2, 176}, {26, 168}, {45, 159}, {50, 128}, {98, 208}, {99, 209}, {113, 195}, {5, 177}, {46, 154}, {47, 155}, {80, 228}, {109, 217}, {43, 158}, {94, 235}, {3, 181}, {118, 192}, {103, 209}, {47, 152}, {21, 173}, {61, 133}, {55, 143}, {37, 157}, {96, 216}, {11, 178}, {45, 148}, {106, 211}, {21, 175}, {115, 201}, {38, 156}, {107, 209}, {114, 200}, {40, 147}, {52, 143}, {12, 176}, {90, 230}, {8, 181}, {10, 183}, {15, 178}, {34, 159}, {40, 149}, {22, 168}, {24, 166}, {103, 217}, {9, 182}, {38, 153}, {26, 218}, {14, 207}, {23, 214}, {40, 233}, {80, 145}, {93, 156}, {1, 195}, {67, 129}, {6, 196}, {20, 214}, {41, 235}, {86, 148}, {7, 196}, {22, 213}, {34, 225}, {36, 231}, {95, 156}, {78, 138}, {2, 199}, {30, 219}, {47, 234}, {92, 153}, {101, 160}, {22, 208}, {117, 179}, {32, 230}, {89, 159}, {92, 154}, {66, 133}, {120, 191}, {71, 128}, {10, 194}, {44, 228}, {102, 174}, {12, 197}, {69, 140}, {18, 219}, {39, 238}, {109, 164}, {110, 167}, {115, 186}, {100, 174}, {114, 184}, {24, 211}, {27, 208}, {87, 156}, {105, 162}, {18, 222}, {120, 180}, {38, 234}, {42, 230}, {104, 164}, {17, 220}, {72, 133}, {23, 218}, {33, 236}, {95, 146}, {39, 233}, {64, 142}, {86, 152}, {21, 218}, {117, 186}, {68, 139}, {82, 157}, {6, 214}, {55, 231}, {23, 199}, {31, 207}, {82, 130}, {16, 193}, {79, 158}, {83, 130}, {115, 162}, {54, 228}, {82, 128}, {85, 135}, {118, 165}, {19, 199}, {116, 160}, {75, 159}, {113, 165}, {37, 240}, {110, 187}, {77, 155}, {78, 152}, {17, 198}, {26, 205}, {27, 204}, {25, 193}, {58, 226}, {99, 187}, {11, 210}, {118, 175}, {27, 194}, {29, 196}, {5, 223}, {116, 174}, {13, 215}, {114, 169}, {30, 194}, {62, 226}, {102, 186}, {62, 227}, {91, 134}, {48, 238}, {54, 232}, {110, 176}, {72, 151}, {76, 147}, {80, 143}, {82, 141}, {93, 130}, {88, 184}, {100, 132}, {61, 220}, {85, 180}, {103, 134}, {3, 225}, {66, 160}, {55, 213}, {92, 190}, {111, 141}, {44, 207}, {68, 167}, {11, 239}, {36, 192}, {37, 192}, {62, 219}, {56, 221}, {49, 212}, {6, 224}, {118, 144}, {11, 237}, {101, 131}, {108, 138}, {33, 198}, {48, 216}, {44, 197}, {75, 162}, {91, 178}, {32, 202}, {100, 142}, {108, 134}, {4, 239}, {86, 189}, {47, 195}, {73, 165}, {65, 173}, {84, 184}, {102, 138}, {58, 215}, {112, 157}, {9, 231}, {66, 172}, {49, 223}, {51, 221}, {77, 163}, {85, 187}, {110, 128}, {48, 223}, {116, 155}, {69, 170}, {55, 216}, {49, 222}, {78, 161}, {108, 131}, {70, 182}, {88, 168}, {68, 181}, {79, 190}, {85, 164}, {52, 198}, {73, 187}, {58, 200}, {53, 199}, {106, 152}, {23, 228}, {74, 185}, {61, 206}, {57, 202}, {104, 155}, {22, 226}, {74, 190}, {43, 223}, {96, 148}, {98, 150}, {113, 133}, {120, 141}, {42, 220}, {65, 183}, {81, 167}, {87, 161}, {95, 169}, {37, 210}, {38, 222}, {117, 141}, {104, 144}, {43, 210}, {52, 205}, {96, 153}, {107, 146}, {45, 215}, {67, 185}, {113, 139}, {34, 217}, {105, 146}, {107, 144}, {12, 240}, {119, 139}, {57, 197}, {46, 210}, {19, 238}, {60, 193}, {27, 229}, {67, 189}, {91, 165}, {94, 160}, {67, 188}, {119, 136}, {86, 169} }>;

(II) A more general form is to represent the graph as the orbit of {112, 127} under the group generated by the following permutations:

a: (2, 95, 6, 47)(4, 83, 14, 34)(7, 38, 23, 86)(8, 93, 20, 78)(9, 42, 31, 89)(10, 43, 22, 36)(11, 62, 35, 71)(12, 94, 39, 84)(15, 30, 46, 58)(16, 41, 48, 88)(17, 44, 45, 40)(18, 21, 51, 28)(19, 114, 29, 90)(24, 49, 26, 32)(25, 87, 64, 106)(27, 37, 66, 85)(33, 91, 81, 117)(50, 100, 97, 119)(52, 57, 98, 74)(53, 61, 99, 75)(54, 96)(55, 65, 60, 79)(56, 120, 77, 118)(59, 63, 92, 80)(67, 69, 70, 76)(68, 82, 72, 73)(101, 109)(102, 108, 103, 115)(104, 107, 105, 116)(110, 111, 112, 113)(121, 131, 217, 239)(122, 154, 200, 145)(123, 233, 198, 197)(124, 178, 219, 179)(125, 127, 195, 176)(126, 216, 232, 193)(128, 237, 227, 139)(129, 170, 215, 147)(130, 151, 225, 181)(132, 235, 238, 184)(133, 187, 229, 157)(134, 201, 186, 138)(135, 194, 210, 226)(136, 161, 142, 203)(137, 156, 214, 152)(140, 222, 218, 189)(141, 236, 165, 167)(143, 173, 150, 190)(144, 146, 224, 155)(148, 171, 153, 228)(149, 220, 207, 159)(158, 213, 231, 183)(160, 164, 204, 240)(162, 174, 206, 209)(163, 175, 221, 191)(166, 223, 168, 177)(169, 196, 234, 199)(172, 180, 208, 192)(182, 230, 188, 212)(185, 205, 202, 211)
b: (1, 2, 7, 24, 41, 77, 112, 53, 40, 76, 90, 47)(3, 11, 36, 70, 17, 50, 68, 91, 16, 49, 52, 71)(4, 15, 32, 38, 84, 110, 8, 28, 5, 18, 33, 82)(6, 19, 54, 98, 97, 116, 39, 23, 63, 106, 94, 104)(9, 13, 42, 75, 113, 12, 25, 69, 10, 34, 72, 37)(14, 43, 55, 58, 83, 115, 35, 57, 96, 114, 56, 103)(20, 46, 65, 45, 61, 105, 119, 44, 60, 89, 66, 109)(21, 59, 86, 95, 107, 99, 31, 79, 22, 62, 102, 117)(26, 30, 78, 111, 118, 29, 67, 87, 27, 73, 100, 74)(48, 80, 51, 93, 101, 85, 64, 92, 88, 81, 108, 120)(121, 186, 179, 173, 148, 169, 146, 209, 207, 158, 213, 226)(122, 152, 125, 144, 196, 188, 126, 208, 227, 174, 233, 218)(123, 206, 224, 238, 228, 150, 203, 160, 164, 214, 154, 232)(124, 130, 239, 135, 202, 153, 184, 167, 134, 191, 223, 143)(127, 199, 171, 211, 235, 155)(128, 181, 178, 177, 222, 198)(129, 161, 229, 165, 132, 185, 205, 194, 225, 237, 192, 182)(131, 180, 216, 200, 221, 201)(133, 240, 136, 170, 183, 159)(137, 140, 166, 163, 236, 157, 149, 147, 230, 234, 195, 176)(138, 141, 175, 145, 189, 156, 204, 187, 142, 190, 168, 219)(139, 197, 193, 212, 172, 217, 151, 210, 231, 215, 220, 162)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 170 ]
240
-1 176 125 127 195
-2 176 144 199 137
-3 181 225 151 130
-4 181 149 239 175
-5 166 177 168 223
-6 224 214 127 196
-7 137 171 140 196
-8 134 137 181 142
-9 231 136 149 182
-10 166 172 183 194
-11 210 178 237 239
-12 132 176 240 197
-13 147 170 215 129
-14 191 151 207 131
-15 145 178 135 147
-16 132 177 191 193
-17 198 220 129 153
-18 143 222 163 219
-19 154 188 199 238
-20 136 214 151 186
-21 179 173 218 175
-22 168 213 226 208
-23 199 214 228 218
-24 166 188 211 140
-25 136 137 193 185
-26 168 182 205 218
-27 204 194 229 208
-28 178 190 191 140
-29 132 145 182 196
-30 122 194 129 219
-31 188 158 207 142
-32 177 189 202 230
-33 198 124 236 138
-34 159 225 217 163
-35 135 179 139 131
-36 231 177 135 192
-37 210 157 192 240
-38 156 222 234 153
-39 233 127 238 164
-40 233 147 149 171
-41 166 235 126 163
-42 220 161 183 230
-43 210 223 158 180
-44 170 228 207 197
-45 123 148 159 215
-46 154 210 179 170
-47 155 234 195 152
-48 223 216 238 175
-49 222 212 223 185
-50 128 161 162 184
-51 221 189 124 150
-52 143 198 172 205
-53 199 157 149 174
-54 232 126 171 228
-55 143 231 213 216
-56 221 167 146 172
-57 180 202 173 197
-58 200 124 215 226
-59 122 145 148 173
-60 158 193 150 183
-61 220 133 169 206
-62 121 226 227 219
-63 154 122 171 150
-64 202 214 216 142
-65 231 232 183 173
-66 133 160 226 172
-67 188 189 129 185
-68 167 181 139 229
-69 212 170 205 140
-70 222 202 182 215
-71 124 128 194 217
-72 133 236 237 151
-73 165 187 225 227
-74 233 190 192 185
-75 234 159 162 229
-76 211 147 218 230
-77 155 236 163 208
-78 225 138 161 152
-79 190 158 213 126
-80 143 145 200 228
-81 123 167 201 219
-82 157 128 130 141
-83 121 220 221 130
-84 198 204 184 195
-85 187 135 180 164
-86 189 169 148 152
-87 156 126 161 205
-88 221 232 168 184
-89 212 213 159 203
-90 122 234 235 230
-91 165 134 178 197
-92 154 200 190 153
-93 156 201 203 130
-94 123 125 235 160
-95 156 146 125 169
-96 148 193 216 153
-97 235 203 227 206
-98 123 211 150 208
-99 187 209 196 207
-100 132 237 174 142
-101 160 204 239 131
-102 121 138 174 186
-103 209 134 201 217
-104 144 155 206 164
-105 146 224 162 240
-106 232 211 203 152
-107 209 144 146 204
-108 134 138 206 131
-109 121 217 240 164
-110 176 187 167 128
-111 125 237 141 229
-112 157 236 127 227
-113 165 133 139 195
-114 200 212 169 184
-115 201 162 239 186
-116 155 224 160 174
-117 233 179 141 186
-118 165 144 192 175
-119 209 136 139 238
-120 180 191 224 141
-121 102 83 62 109
-122 90 59 30 63
-123 45 81 94 98
-124 33 58 71 51
-125 1 111 94 95
-126 79 41 54 87
-127 1 112 6 39
-128 110 71 82 50
-129 67 13 17 30
-130 3 82 93 83
-131 35 101 14 108
-132 12 100 16 29
-133 66 113 61 72
-134 91 103 8 108
-135 35 36 15 85
-136 25 9 20 119
-137 2 25 7 8
-138 33 78 102 108
-139 35 68 113 119
-140 24 69 28 7
-141 111 82 117 120
-142 100 8 31 64
-143 55 80 18 52
-144 2 104 107 118
-145 80 15 59 29
-146 56 105 95 107
-147 13 15 40 76
-148 45 59 96 86
-149 4 40 9 53
-150 60 51 63 98
-151 3 14 72 20
-152 78 47 106 86
-153 92 38 17 96
-154 46 92 19 63
-155 77 47 104 116
-156 38 93 95 87
-157 112 37 82 53
-158 79 60 31 43
-159 34 45 89 75
-160 66 101 94 116
-161 78 50 42 87
-162 115 50 105 75
-163 77 34 18 41
-164 104 39 85 109
-165 91 113 73 118
-166 24 5 41 10
-167 110 56 68 81
-168 22 88 26 5
-169 114 61 95 86
-170 44 13 46 69
-171 7 40 63 54
-172 66 56 52 10
-173 57 59 21 65
-174 100 102 116 53
-175 4 48 118 21
-176 110 1 12 2
-177 36 5 16 32
-178 11 91 15 28
-179 35 46 117 21
-180 57 85 43 120
-181 68 3 4 8
-182 26 70 29 9
-183 60 42 10 65
-184 88 114 50 84
-185 67 25 49 74
-186 102 115 117 20
-187 99 110 73 85
-188 67 24 19 31
-189 67 51 86 32
-190 79 92 28 74
-191 14 16 28 120
-192 36 37 74 118
-193 25 16 60 96
-194 27 71 30 10
-195 1 47 113 84
-196 99 6 7 29
-197 44 12 57 91
-198 33 17 84 52
-199 23 2 19 53
-200 58 80 92 114
-201 81 103 93 115
-202 57 70 64 32
-203 89 93 106 97
-204 101 27 84 107
-205 69 26 52 87
-206 104 61 97 108
-207 44 99 14 31
-208 22 77 27 98
-209 99 103 107 119
-210 11 46 37 43
-211 24 106 76 98
-212 89 69 114 49
-213 22 55 89 79
-214 23 6 20 64
-215 45 13 58 70
-216 55 48 96 64
-217 34 103 71 109
-218 23 26 21 76
-219 81 18 62 30
-220 17 61 83 42
-221 88 56 83 51
-222 70 38 49 18
-223 48 5 49 43
-224 6 105 116 120
-225 34 78 3 73
-226 22 66 58 62
-227 112 62 73 97
-228 44 23 80 54
-229 111 68 27 75
-230 90 42 32 76
-231 55 36 9 65
-232 88 106 54 65
-233 39 40 117 74
-234 90 47 38 75
-235 90 94 41 97
-236 33 77 112 72
-237 11 100 111 72
-238 48 39 19 119
-239 11 101 4 115
-240 12 37 105 109
0

**************