[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 171 ] =
BGCG(UG(ATD[120,10]);K1;29).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {120, 123}, {119, 122}, {108, 127}, {97, 127}, {91, 126}, {95,
121}, {85, 126}, {86, 121}, {78, 127}, {73, 127}, {71, 124}, {65, 125}, {56,
124}, {57, 126}, {48, 122}, {51, 124}, {43, 123}, {47, 121}, {38, 121}, {26,
125}, {28, 123}, {21, 125}, {11, 123}, {15, 126}, {9, 122}, {9, 125}, {10, 124},
{4, 122}, {30, 158}, {67, 195}, {56, 184}, {107, 235}, {112, 240}, {26, 155},
{70, 199}, {52, 181}, {11, 137}, {72, 202}, {22, 148}, {46, 172}, {110, 236},
{5, 134}, {62, 189}, {9, 138}, {82, 209}, {37, 161}, {116, 240}, {59, 191}, {40,
172}, {19, 150}, {28, 153}, {43, 174}, {89, 220}, {106, 239}, {18, 148}, {60,
186}, {57, 191}, {29, 155}, {39, 161}, {41, 175}, {21, 146}, {64, 199}, {12,
132}, {77, 197}, {21, 157}, {45, 164}, {92, 213}, {18, 152}, {76, 198}, {50,
184}, {83, 217}, {106, 224}, {33, 170}, {34, 169}, {44, 167}, {82, 217}, {85,
222}, {103, 236}, {1, 141}, {61, 177}, {10, 134}, {23, 155}, {93, 209}, {100,
232}, {105, 229}, {5, 136}, {63, 178}, {28, 145}, {102, 232}, {16, 159}, {75,
196}, {24, 151}, {42, 165}, {12, 156}, {118, 230}, {58, 170}, {17, 129}, {18,
130}, {43, 186}, {7, 149}, {73, 219}, {8, 154}, {15, 157}, {21, 135}, {30, 140},
{77, 223}, {56, 171}, {63, 172}, {82, 193}, {14, 154}, {16, 132}, {70, 211}, {4,
146}, {90, 204}, {25, 142}, {115, 228}, {73, 222}, {72, 223}, {50, 165}, {92,
203}, {94, 201}, {74, 210}, {3, 154}, {68, 221}, {81, 200}, {89, 192}, {91,
194}, {93, 196}, {17, 139}, {113, 235}, {11, 144}, {42, 177}, {44, 183}, {33,
189}, {119, 235}, {10, 151}, {120, 229}, {118, 235}, {66, 223}, {23, 138}, {89,
196}, {14, 144}, {71, 217}, {68, 218}, {52, 170}, {20, 138}, {83, 205}, {14,
145}, {52, 171}, {49, 174}, {34, 130}, {119, 215}, {72, 232}, {68, 228}, {62,
158}, {2, 163}, {13, 172}, {19, 178}, {113, 208}, {29, 191}, {58, 152}, {47,
141}, {115, 209}, {36, 135}, {76, 239}, {54, 149}, {7, 163}, {58, 158}, {35,
135}, {97, 197}, {106, 206}, {6, 163}, {32, 133}, {16, 182}, {59, 157}, {41,
143}, {106, 204}, {108, 202}, {111, 201}, {102, 193}, {117, 210}, {114, 213},
{8, 160}, {118, 222}, {15, 167}, {29, 180}, {31, 182}, {3, 169}, {62, 148}, {5,
175}, {13, 167}, {16, 186}, {24, 178}, {29, 183}, {98, 200}, {60, 151}, {116,
223}, {71, 236}, {65, 234}, {36, 136}, {74, 230}, {101, 201}, {97, 204}, {104,
197}, {65, 239}, {78, 224}, {79, 225}, {108, 194}, {2, 173}, {75, 228}, {66,
237}, {20, 187}, {42, 133}, {45, 130}, {104, 216}, {1, 176}, {86, 231}, {107,
218}, {6, 180}, {50, 128}, {63, 140}, {96, 211}, {113, 194}, {20, 160}, {117,
193}, {23, 163}, {109, 217}, {7, 178}, {81, 228}, {99, 214}, {112, 197}, {37,
147}, {51, 133}, {88, 238}, {104, 222}, {109, 219}, {36, 147}, {46, 153}, {82,
229}, {87, 224}, {3, 187}, {14, 182}, {43, 147}, {48, 136}, {101, 221}, {104,
208}, {22, 175}, {60, 133}, {25, 160}, {44, 149}, {87, 238}, {40, 146}, {8,
179}, {12, 183}, {61, 129}, {63, 131}, {3, 190}, {57, 132}, {44, 145}, {81,
236}, {90, 231}, {93, 224}, {97, 220}, {105, 212}, {48, 142}, {4, 187}, {55,
136}, {53, 138}, {5, 186}, {32, 159}, {49, 142}, {51, 140}, {37, 229}, {27,
218}, {39, 230}, {77, 143}, {100, 166}, {110, 173}, {19, 215}, {119, 179}, {39,
226}, {53, 240}, {42, 239}, {92, 153}, {13, 203}, {85, 147}, {107, 173}, {32,
231}, {65, 134}, {46, 233}, {101, 162}, {114, 181}, {67, 139}, {80, 152}, {115,
187}, {31, 214}, {85, 156}, {111, 166}, {32, 234}, {35, 233}, {40, 226}, {91,
145}, {92, 150}, {80, 155}, {99, 168}, {109, 161}, {112, 189}, {9, 199}, {25,
215}, {36, 234}, {45, 227}, {99, 173}, {103, 169}, {67, 140}, {76, 131}, {103,
168}, {69, 149}, {100, 180}, {105, 185}, {7, 214}, {76, 157}, {23, 198}, {94,
143}, {105, 184}, {112, 161}, {6, 212}, {116, 166}, {18, 192}, {27, 201}, {100,
182}, {27, 200}, {57, 234}, {81, 130}, {94, 141}, {113, 162}, {99, 183}, {103,
179}, {1, 212}, {67, 150}, {2, 215}, {26, 207}, {84, 129}, {24, 206}, {30, 200},
{48, 230}, {110, 184}, {111, 185}, {53, 226}, {87, 128}, {12, 212}, {72, 144},
{59, 227}, {54, 238}, {102, 190}, {1, 216}, {77, 148}, {71, 158}, {4, 221}, {22,
207}, {90, 131}, {2, 216}, {17, 203}, {25, 195}, {102, 189}, {107, 176}, {17,
205}, {74, 150}, {69, 153}, {59, 231}, {31, 195}, {86, 139}, {8, 214}, {120,
166}, {70, 152}, {88, 134}, {64, 159}, {95, 128}, {64, 160}, {66, 162}, {79,
175}, {35, 194}, {73, 168}, {79, 174}, {98, 131}, {11, 233}, {56, 218}, {38,
196}, {47, 204}, {50, 209}, {49, 213}, {74, 174}, {84, 176}, {62, 219}, {80,
181}, {89, 188}, {15, 233}, {95, 185}, {111, 137}, {10, 237}, {117, 146}, {41,
206}, {86, 177}, {66, 170}, {33, 202}, {87, 188}, {96, 139}, {33, 205}, {61,
208}, {83, 190}, {98, 143}, {13, 227}, {40, 198}, {96, 142}, {75, 164}, {95,
176}, {54, 198}, {69, 181}, {55, 199}, {78, 190}, {19, 226}, {118, 135}, {58,
203}, {49, 192}, {109, 156}, {75, 185}, {110, 156}, {114, 128}, {38, 213}, {79,
188}, {88, 171}, {91, 168}, {114, 129}, {26, 238}, {64, 180}, {53, 193}, {93,
169}, {38, 211}, {41, 220}, {98, 151}, {101, 144}, {6, 240}, {27, 237}, {83,
165}, {84, 162}, {108, 154}, {37, 210}, {68, 179}, {61, 202}, {55, 192}, {80,
167}, {54, 206}, {55, 207}, {24, 225}, {116, 141}, {70, 191}, {69, 188}, {34,
219}, {94, 164}, {115, 137}, {22, 237}, {52, 207}, {20, 232}, {120, 132}, {117,
137}, {46, 210}, {28, 225}, {30, 227}, {88, 165}, {31, 225}, {34, 220}, {35,
221}, {45, 211}, {51, 205}, {90, 164}, {39, 216}, {60, 195}, {47, 208}, {78,
177}, {84, 171}, {96, 159} }>;
(II) A more general form is to represent the graph as the orbit of {120, 123}
under the group generated by the following permutations:
a: (2, 6)(4, 14)(7, 23)(8, 20)(9, 31)(10, 22)(11, 35)(12, 39)(15, 46)(16,
48)(17, 45)(18, 51)(19, 29)(21, 28)(24, 26)(25, 64)(27, 66)(30, 58)(32, 49)(33,
81)(34, 83)(36, 43)(37, 85)(38, 86)(40, 44)(41, 88)(42, 89)(47, 95)(50, 97)(52,
98)(53, 99)(55, 60)(56, 77)(57, 74)(59, 92)(61, 75)(62, 71)(63, 80)(65, 79)(67,
70)(68, 72)(69, 76)(73, 82)(78, 93)(84, 94)(87, 106)(90, 114)(91, 117)(100,
119)(102, 103)(104, 105)(107, 116)(108, 115)(110, 112)(111, 113)(118, 120)(122,
182)(123, 135)(124, 148)(125, 225)(126, 210)(127, 209)(128, 204)(129, 164)(130,
205)(131, 181)(132, 230)(133, 192)(134, 175)(136, 186)(137, 194)(138, 214)(139,
211)(140, 152)(141, 176)(142, 159)(143, 171)(144, 221)(145, 146)(149, 198)(150,
191)(151, 207)(153, 157)(154, 187)(155, 178)(156, 161)(162, 201)(165, 220)(166,
235)(167, 172)(168, 193)(169, 190)(170, 200)(173, 240)(174, 234)(177, 196)(179,
232)(180, 215)(183, 226)(184, 197)(185, 208)(188, 239)(189, 236)(195, 199)(202,
228)(203, 227)(206, 238)(212, 216)(213, 231)(217, 219)(218, 223)(222, 229) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 107, 119, 68, 4, 115, 117, 82, 37, 109, 85, 73, 91, 108, 14, 72, 100,
116, 6)(3, 11, 102, 120, 112, 12, 104, 99, 113, 8, 101, 20, 111, 53, 105, 39,
110, 118, 103, 35)(5, 18, 59, 106, 69, 17, 60, 22, 70, 90, 54, 114, 67, 10, 55,
45, 76, 87, 92, 51)(7, 84, 25, 27, 9, 75, 40, 50, 74, 71, 36, 34, 15, 78, 28,
33, 16, 77, 29, 47)(13, 42, 79, 58, 32, 41, 80, 86, 24, 52, 96, 98, 26, 38, 63,
88, 49, 30, 65, 89)(19, 56, 48, 81, 21, 93, 46, 83, 43, 62, 57, 97, 44, 61, 31,
66, 64, 94, 23, 95)(121, 178, 171, 142, 200, 125, 196, 172, 165, 174, 158, 234,
220, 167, 177, 225, 170, 159, 143, 155)(122, 228, 146, 209, 210, 217, 147, 219,
126, 127, 145, 202, 182, 223, 180, 141, 163, 176, 215, 218)(123, 189, 132, 197,
183, 208, 214, 162, 160, 201, 138, 185, 226, 184, 230, 236, 135, 169, 233,
190)(124, 136, 130, 157, 224, 153, 205, 186, 148, 191, 204, 149, 129, 195, 237,
199, 164, 198, 128, 150)(131, 238, 213, 140, 134, 192, 227, 239, 188, 203, 133,
175, 152, 231, 206, 181, 139, 151, 207, 211)(137, 193, 229, 161, 156, 222, 168,
194, 154, 144, 232, 166, 240, 212, 216, 173, 235, 179, 221, 187)
c: (2, 95, 6, 47)(4, 83, 14, 34)(7, 38, 23, 86)(8, 93, 20, 78)(9, 42, 31,
89)(10, 43, 22, 36)(11, 62, 35, 71)(12, 94, 39, 84)(15, 30, 46, 58)(16, 41, 48,
88)(17, 44, 45, 40)(18, 21, 51, 28)(19, 114, 29, 90)(24, 49, 26, 32)(25, 87, 64,
106)(27, 37, 66, 85)(33, 91, 81, 117)(50, 100, 97, 119)(52, 57, 98, 74)(53, 61,
99, 75)(54, 96)(55, 65, 60, 79)(56, 120, 77, 118)(59, 63, 92, 80)(67, 69, 70,
76)(68, 82, 72, 73)(101, 109)(102, 108, 103, 115)(104, 107, 105, 116)(110, 111,
112, 113)(121, 163)(122, 165, 182, 220)(123, 148, 135, 124)(125, 133, 225,
192)(126, 200, 210, 170)(127, 179, 209, 232)(128, 180, 204, 215)(129, 183, 164,
226)(130, 146, 205, 145)(131, 150, 181, 191)(132, 143, 230, 171)(134, 186, 175,
136)(137, 189, 194, 236)(138, 177, 214, 196)(139, 149, 211, 198)(140, 153, 152,
157)(141, 216, 176, 212)(142, 238, 159, 206)(144, 219, 221, 217)(147, 237)(151,
174, 207, 234)(154, 169, 187, 190)(155, 231, 178, 213)(156, 201, 161, 162)(158,
233)(160, 224)(166, 197, 235, 184)(167, 227, 172, 203)(168, 228, 193, 202)(173,
185, 240, 208)(188, 199, 239, 195)(218, 229, 223, 222)
C4[ 240, 171 ]
240
-1 176 212 216 141
-2 215 216 173 163
-3 154 187 190 169
-4 187 122 221 146
-5 134 136 175 186
-6 212 180 163 240
-7 178 214 149 163
-8 154 179 214 160
-9 122 199 125 138
-10 134 124 237 151
-11 144 123 233 137
-12 132 156 212 183
-13 167 203 172 227
-14 154 144 145 182
-15 167 233 157 126
-16 132 159 182 186
-17 203 139 205 129
-18 148 192 130 152
-19 178 215 226 150
-20 187 232 138 160
-21 135 146 157 125
-22 148 237 207 175
-23 198 155 138 163
-24 178 225 151 206
-25 160 215 195 142
-26 155 125 238 207
-27 200 201 237 218
-28 123 145 225 153
-29 155 180 191 183
-30 200 158 227 140
-31 214 225 182 195
-32 231 133 234 159
-33 189 202 170 205
-34 220 169 130 219
-35 221 233 135 194
-36 135 234 136 147
-37 210 147 161 229
-38 121 211 213 196
-39 226 161 216 230
-40 198 146 226 172
-41 143 220 206 175
-42 165 133 177 239
-43 123 147 174 186
-44 145 167 149 183
-45 211 227 130 164
-46 210 233 172 153
-47 121 204 141 208
-48 122 136 142 230
-49 213 192 174 142
-50 165 209 128 184
-51 133 124 205 140
-52 170 181 171 207
-53 138 193 226 240
-54 198 149 238 206
-55 199 136 192 207
-56 124 171 184 218
-57 132 234 191 126
-58 158 170 203 152
-59 231 157 191 227
-60 133 151 195 186
-61 177 202 129 208
-62 189 158 148 219
-63 178 172 140 131
-64 199 180 159 160
-65 134 234 125 239
-66 223 170 237 162
-67 139 150 140 195
-68 221 179 228 218
-69 188 181 149 153
-70 199 211 191 152
-71 124 158 236 217
-72 144 232 223 202
-73 222 168 127 219
-74 210 150 174 230
-75 228 185 196 164
-76 198 157 239 131
-77 143 223 148 197
-78 177 190 224 127
-79 188 225 174 175
-80 155 167 181 152
-81 200 236 228 130
-82 209 193 217 229
-83 165 190 205 217
-84 176 171 129 162
-85 156 222 147 126
-86 121 231 177 139
-87 188 224 128 238
-88 165 134 171 238
-89 220 188 192 196
-90 231 204 131 164
-91 145 168 126 194
-92 213 203 150 153
-93 209 169 224 196
-94 143 201 141 164
-95 121 176 128 185
-96 211 159 139 142
-97 220 127 204 197
-98 143 200 151 131
-99 168 214 183 173
-100 166 232 180 182
-101 144 221 201 162
-102 232 189 190 193
-103 168 179 169 236
-104 222 216 197 208
-105 212 184 185 229
-106 224 204 206 239
-107 176 235 173 218
-108 154 202 127 194
-109 156 161 217 219
-110 156 236 173 184
-111 166 201 137 185
-112 189 161 240 197
-113 235 194 162 208
-114 213 181 128 129
-115 187 209 137 228
-116 166 223 141 240
-117 210 146 137 193
-118 222 135 235 230
-119 122 179 235 215
-120 132 166 123 229
-121 47 38 95 86
-122 4 48 9 119
-123 11 28 43 120
-124 56 71 51 10
-125 26 9 21 65
-126 57 91 15 85
-127 78 73 97 108
-128 114 50 95 87
-129 114 17 61 84
-130 34 45 81 18
-131 90 63 76 98
-132 12 57 16 120
-133 60 51 42 32
-134 88 5 10 65
-135 35 36 118 21
-136 55 36 48 5
-137 11 111 115 117
-138 23 9 20 53
-139 67 17 96 86
-140 67 51 30 63
-141 1 47 94 116
-142 25 48 49 96
-143 77 94 41 98
-144 11 101 14 72
-145 44 14 91 28
-146 4 40 117 21
-147 36 37 85 43
-148 22 77 18 62
-149 44 69 7 54
-150 67 92 19 74
-151 24 60 10 98
-152 58 80 70 18
-153 46 69 92 28
-154 3 14 8 108
-155 23 80 26 29
-156 110 12 85 109
-157 15 59 21 76
-158 58 71 62 30
-159 16 96 64 32
-160 25 8 20 64
-161 112 37 39 109
-162 66 101 113 84
-163 23 2 6 7
-164 45 90 94 75
-165 88 50 83 42
-166 100 111 116 120
-167 44 13 80 15
-168 99 91 103 73
-169 34 3 103 93
-170 33 66 58 52
-171 88 56 84 52
-172 13 46 40 63
-173 99 110 2 107
-174 79 49 74 43
-175 22 79 5 41
-176 1 84 95 107
-177 78 61 42 86
-178 24 7 19 63
-179 68 103 8 119
-180 100 6 29 64
-181 69 80 114 52
-182 100 14 16 31
-183 44 99 12 29
-184 110 56 50 105
-185 111 105 95 75
-186 5 16 60 43
-187 3 4 115 20
-188 89 79 69 87
-189 33 112 102 62
-190 78 3 102 83
-191 57 59 70 29
-192 55 89 49 18
-193 102 82 117 53
-194 35 91 113 108
-195 67 25 60 31
-196 89 38 93 75
-197 77 112 104 97
-198 23 40 54 76
-199 55 70 9 64
-200 81 27 30 98
-201 111 101 27 94
-202 33 61 72 108
-203 13 58 92 17
-204 90 47 106 97
-205 33 17 83 51
-206 24 106 41 54
-207 22 55 26 52
-208 47 113 104 61
-209 82 93 115 50
-210 46 37 117 74
-211 45 70 38 96
-212 1 12 6 105
-213 92 114 38 49
-214 99 7 8 31
-215 2 25 19 119
-216 1 2 104 39
-217 71 82 83 109
-218 56 68 27 107
-219 34 62 73 109
-220 34 89 41 97
-221 35 68 101 4
-222 104 73 85 118
-223 66 77 72 116
-224 78 93 106 87
-225 24 79 28 31
-226 39 40 19 53
-227 45 13 59 30
-228 68 81 115 75
-229 37 82 105 120
-230 48 39 74 118
-231 90 59 86 32
-232 100 102 72 20
-233 11 35 46 15
-234 57 36 32 65
-235 113 107 118 119
-236 110 81 103 71
-237 22 66 27 10
-238 88 26 54 87
-239 106 42 65 76
-240 112 6 116 53
0