[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 172 ] =
BGCG(UG(ATD[120,53]);K1;2).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {113, 122}, {105, 125}, {99, 122}, {92, 125}, {91, 126}, {83,
127}, {85, 121}, {79, 127}, {79, 126}, {74, 124}, {68, 126}, {70, 124}, {65,
127}, {59, 121}, {61, 126}, {45, 122}, {29, 125}, {26, 123}, {29, 124}, {26,
121}, {30, 125}, {27, 127}, {18, 123}, {17, 124}, {11, 123}, {15, 121}, {6,
122}, {6, 123}, {3, 131}, {73, 201}, {4, 132}, {13, 141}, {100, 228}, {17, 144},
{23, 150}, {87, 214}, {1, 131}, {84, 214}, {53, 182}, {57, 186}, {93, 222},
{111, 236}, {14, 138}, {35, 167}, {95, 219}, {100, 224}, {101, 225}, {20, 145},
{66, 199}, {64, 197}, {62, 187}, {28, 153}, {32, 165}, {103, 226}, {106, 239},
{39, 161}, {67, 197}, {86, 208}, {92, 218}, {104, 238}, {110, 232}, {8, 143},
{72, 207}, {17, 153}, {69, 205}, {87, 223}, {36, 174}, {42, 160}, {98, 232},
{53, 190}, {6, 138}, {73, 197}, {9, 133}, {20, 152}, {84, 216}, {93, 209}, {111,
227}, {9, 132}, {60, 177}, {43, 166}, {106, 231}, {107, 230}, {38, 168}, {55,
185}, {54, 184}, {45, 163}, {80, 222}, {89, 215}, {40, 167}, {65, 206}, {59,
180}, {47, 160}, {52, 187}, {82, 221}, {1, 145}, {5, 149}, {8, 152}, {113, 225},
{33, 176}, {57, 168}, {54, 167}, {27, 137}, {38, 180}, {47, 189}, {113, 227},
{4, 151}, {75, 216}, {72, 219}, {78, 221}, {17, 133}, {60, 168}, {48, 164}, {79,
219}, {86, 194}, {2, 151}, {73, 220}, {70, 211}, {66, 215}, {61, 168}, {15,
154}, {51, 166}, {29, 139}, {35, 181}, {39, 177}, {40, 190}, {2, 149}, {69,
210}, {67, 212}, {64, 215}, {16, 135}, {46, 185}, {91, 204}, {7, 159}, {70,
222}, {46, 183}, {33, 187}, {56, 162}, {11, 144}, {61, 166}, {43, 176}, {57,
165}, {14, 147}, {72, 213}, {44, 177}, {91, 198}, {22, 136}, {117, 235}, {92,
194}, {94, 192}, {16, 143}, {69, 218}, {25, 185}, {68, 228}, {78, 238}, {102,
198}, {21, 180}, {108, 205}, {13, 175}, {60, 158}, {24, 186}, {15, 172}, {34,
129}, {49, 146}, {25, 189}, {63, 155}, {54, 146}, {84, 240}, {111, 203}, {13,
171}, {67, 229}, {19, 181}, {21, 179}, {40, 142}, {42, 140}, {32, 135}, {77,
234}, {55, 144}, {43, 140}, {1, 169}, {21, 188}, {71, 238}, {22, 191}, {51,
154}, {5, 175}, {15, 165}, {33, 139}, {110, 196}, {2, 169}, {7, 172}, {10, 161},
{34, 137}, {106, 193}, {19, 191}, {65, 237}, {108, 192}, {99, 206}, {12, 162},
{24, 183}, {77, 226}, {63, 144}, {37, 138}, {54, 153}, {112, 223}, {114, 221},
{35, 147}, {41, 153}, {44, 156}, {2, 179}, {3, 178}, {19, 162}, {46, 159}, {80,
225}, {12, 190}, {25, 171}, {53, 135}, {81, 227}, {86, 228}, {90, 232}, {91,
233}, {100, 214}, {18, 161}, {119, 196}, {118, 197}, {112, 195}, {30, 170},
{117, 193}, {41, 157}, {50, 134}, {53, 129}, {97, 213}, {9, 188}, {12, 186},
{103, 209}, {51, 132}, {101, 210}, {28, 164}, {81, 233}, {85, 237}, {114, 202},
{7, 190}, {19, 170}, {98, 219}, {8, 178}, {46, 148}, {50, 136}, {93, 231}, {101,
223}, {45, 150}, {87, 236}, {108, 208}, {28, 161}, {118, 203}, {60, 129}, {59,
134}, {52, 137}, {104, 213}, {25, 167}, {85, 235}, {88, 230}, {18, 173}, {41,
150}, {90, 229}, {95, 224}, {1, 193}, {18, 210}, {32, 224}, {95, 159}, {24,
217}, {89, 152}, {4, 198}, {64, 130}, {27, 217}, {85, 151}, {109, 175}, {23,
212}, {88, 155}, {3, 199}, {116, 176}, {47, 235}, {14, 203}, {71, 130}, {26,
220}, {105, 175}, {100, 163}, {120, 191}, {12, 196}, {75, 131}, {37, 237}, {93,
149}, {10, 195}, {118, 191}, {117, 188}, {116, 189}, {73, 128}, {16, 217}, {105,
160}, {8, 194}, {120, 178}, {58, 240}, {14, 196}, {28, 214}, {81, 154}, {4,
200}, {13, 193}, {22, 218}, {37, 233}, {43, 231}, {103, 171}, {39, 234}, {94,
147}, {96, 173}, {82, 156}, {7, 200}, {115, 188}, {63, 240}, {58, 234}, {31,
206}, {102, 183}, {34, 240}, {70, 148}, {48, 226}, {27, 200}, {31, 204}, {89,
138}, {31, 203}, {66, 150}, {62, 234}, {52, 224}, {5, 208}, {113, 164}, {26,
204}, {61, 235}, {55, 225}, {49, 230}, {86, 129}, {87, 128}, {99, 180}, {9,
209}, {68, 156}, {31, 199}, {96, 184}, {58, 227}, {119, 174}, {67, 154}, {10,
208}, {52, 239}, {82, 137}, {84, 143}, {78, 146}, {82, 142}, {90, 134}, {94,
130}, {5, 216}, {116, 169}, {16, 205}, {80, 141}, {109, 176}, {20, 202}, {30,
192}, {48, 238}, {65, 158}, {115, 172}, {49, 209}, {83, 179}, {96, 128}, {98,
130}, {62, 223}, {75, 170}, {74, 171}, {114, 147}, {76, 174}, {6, 229}, {48,
211}, {99, 128}, {57, 221}, {10, 239}, {71, 162}, {88, 189}, {104, 141}, {106,
143}, {109, 136}, {3, 229}, {69, 163}, {58, 220}, {32, 198}, {42, 204}, {107,
141}, {11, 236}, {118, 145}, {107, 140}, {68, 172}, {80, 184}, {102, 142}, {11,
226}, {111, 134}, {36, 207}, {33, 205}, {74, 166}, {59, 215}, {37, 201}, {94,
178}, {98, 142}, {112, 156}, {104, 133}, {120, 149}, {115, 158}, {105, 132},
{114, 159}, {36, 202}, {77, 163}, {64, 174}, {38, 200}, {45, 195}, {95, 177},
{66, 173}, {90, 181}, {34, 210}, {75, 187}, {47, 222}, {116, 133}, {56, 201},
{38, 212}, {72, 186}, {56, 202}, {50, 192}, {83, 160}, {120, 139}, {89, 170},
{44, 216}, {119, 131}, {41, 220}, {77, 184}, {92, 169}, {97, 148}, {109, 152},
{35, 213}, {44, 218}, {83, 165}, {36, 211}, {112, 135}, {55, 207}, {78, 182},
{101, 157}, {102, 158}, {22, 239}, {76, 181}, {74, 179}, {30, 231}, {79, 182},
{23, 237}, {76, 182}, {97, 155}, {103, 157}, {110, 148}, {23, 236}, {76, 183},
{29, 230}, {40, 211}, {50, 201}, {96, 155}, {20, 232}, {63, 195}, {62, 194},
{21, 233}, {24, 228}, {81, 173}, {88, 164}, {97, 157}, {107, 151}, {110, 146},
{51, 206}, {108, 145}, {39, 217}, {117, 139}, {71, 185}, {42, 212}, {49, 207},
{56, 199}, {119, 136}, {115, 140} }>;
(II) A more general form is to represent the graph as the orbit of {113, 122}
under the group generated by the following permutations:
a: (2, 116)(3, 119)(4, 88, 83, 17)(5, 33)(6, 12, 66, 76)(7, 96, 79, 11)(8,
22)(9, 107, 47, 74)(10, 16)(13, 117)(14, 56, 64, 90)(15, 54, 91, 48)(18, 53)(19,
89)(20, 118)(21, 104, 85, 25)(23, 46, 99, 72)(24, 45)(26, 40, 81, 78)(27,
63)(28, 32)(29, 105)(31, 36, 67, 110)(35, 37, 71, 59)(38, 97, 65, 55)(39,
112)(41, 102, 113, 57)(42, 70, 51, 49)(43, 93)(44, 62)(50, 94)(52, 84)(58,
82)(60, 101)(61, 103, 115, 80)(68, 77)(69, 86)(73, 98, 111, 114)(87, 95)(109,
120)(121, 167, 233, 238)(122, 186, 150, 183)(123, 190, 173, 182)(124, 132, 230,
160)(126, 226, 172, 184)(127, 144, 200, 155)(128, 219, 236, 159)(129, 210)(130,
134, 147, 201)(133, 151, 189, 179)(135, 161)(136, 178)(137, 240)(138, 162, 215,
181)(139, 175)(140, 222, 166, 209)(141, 235, 171, 188)(142, 227, 221, 220)(143,
239)(146, 204, 211, 154)(148, 206, 207, 212)(149, 176)(152, 191)(153, 198, 164,
165)(156, 234)(157, 158, 225, 168)(163, 228)(174, 229, 196, 199)(177, 223)(180,
213, 237, 185)(187, 216)(194, 218)(195, 217)(197, 232, 203, 202)(205, 208)(214,
224) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 21, 37, 50, 109, 105, 51, 31, 118)(3, 120, 117, 85, 59, 89, 30, 43,
42, 67)(4, 99, 14, 108, 116, 83, 81, 56, 22, 13)(5, 9, 65, 111, 20, 92, 74, 91,
73, 119)(6, 94, 33, 47, 15, 66, 19, 106, 107, 38)(7, 45, 35, 16, 88, 57, 18, 71,
52, 80)(8, 29, 61, 26, 64, 75, 93, 115, 23, 90)(10, 104, 27, 113, 114, 69, 25,
32, 96, 12)(11, 98, 62, 70, 68, 41, 76, 84, 49, 60)(17, 79, 58, 36, 44, 103,
102, 87, 110, 86)(24, 28, 78, 34, 55, 95, 77, 40, 112, 97)(39, 48, 82, 101, 46,
100, 54, 53, 63, 72)(121, 215, 170, 231, 140, 212, 229, 178, 139, 235)(122, 147,
205, 189, 165, 173, 162, 239, 141, 200)(123, 130, 187, 222, 172, 150, 181, 143,
230, 168)(124, 126, 220, 174, 216, 209, 158, 236, 232, 194)(125, 166, 204, 197,
131, 149, 188, 237, 134, 152)(127, 227, 202, 218, 171, 198, 128, 196, 208,
133)(129, 144, 219, 234, 211, 156, 157, 183, 214, 146)(132, 206, 203, 145, 169,
179, 233, 201, 136, 175)(135, 155, 186, 161, 238, 137, 225, 159, 163, 167)(138,
192, 176, 160, 154, 199, 191, 193, 151, 180)(142, 223, 148, 228, 153, 182, 240,
207, 177, 226)(164, 221, 210, 185, 224, 184, 190, 195, 213, 217)
c: (2, 118, 117, 3)(4, 111, 61, 66)(5, 22, 33, 8)(6, 83, 73, 115)(7, 113, 57,
96)(9, 90, 74, 64)(10, 52, 62, 86)(11, 79, 41, 102)(12, 88, 114, 80)(13, 119,
116, 20)(14, 47, 56, 107)(15, 99)(16, 84, 44, 69)(17, 98, 103, 76)(18, 27, 58,
60)(19, 29, 94, 93)(21, 67)(23, 91)(24, 63, 95, 101)(25, 36, 104, 110)(26,
65)(28, 82, 77, 53)(31, 85)(32, 87, 68, 45)(34, 39)(35, 70, 71, 49)(37, 42)(38,
81)(40, 48, 78, 54)(43, 89, 105, 50)(46, 55, 72, 97)(51, 59)(75, 92, 108,
106)(100, 112)(121, 206)(122, 165, 128, 172)(123, 127, 220, 158)(124, 130, 209,
181)(125, 192, 231, 170)(126, 150, 198, 236)(129, 161, 137, 234)(131, 169, 145,
193)(132, 134, 166, 215)(133, 232, 171, 174)(135, 214, 156, 163)(136, 176, 152,
175)(138, 160, 201, 140)(139, 178, 149, 191)(141, 196, 189, 202)(142, 226, 182,
153)(143, 216, 218, 205)(144, 219, 157, 183)(146, 167, 211, 238)(147, 222, 162,
230)(148, 185, 207, 213)(151, 203, 235, 199)(154, 180)(155, 159, 225, 186)(164,
221, 184, 190)(168, 173, 200, 227)(177, 210, 217, 240)(179, 197, 188, 229)(187,
194, 208, 239)(195, 224, 223, 228)(204, 237)(212, 233)
d: (3, 118)(6, 111)(7, 102)(8, 22)(10, 84)(12, 98)(14, 90)(15, 65)(16, 52)(18,
87)(19, 94)(20, 119)(23, 26)(24, 95)(27, 32)(31, 67)(34, 112)(37, 59)(38,
91)(39, 100)(44, 86)(45, 58)(50, 89)(53, 82)(56, 64)(57, 79)(60, 68)(62, 69)(66,
73)(75, 108)(76, 114)(81, 99)(121, 237)(122, 227)(123, 236)(126, 168)(127,
165)(128, 173)(129, 156)(130, 162)(131, 145)(134, 138)(135, 137)(136, 152)(142,
190)(143, 239)(147, 181)(150, 220)(154, 206)(158, 172)(159, 183)(161, 214)(163,
234)(170, 192)(174, 202)(177, 228)(178, 191)(180, 233)(182, 221)(186, 219)(187,
205)(194, 218)(195, 240)(196, 232)(197, 199)(198, 200)(201, 215)(203, 229)(204,
212)(208, 216)(210, 223)(217, 224)
e: (6, 66)(7, 102)(11, 41)(12, 76)(14, 64)(15, 65)(18, 45)(23, 26)(24, 53)(27,
32)(28, 63)(31, 67)(34, 100)(35, 71)(36, 110)(37, 59)(38, 91)(39, 112)(40,
46)(48, 97)(54, 55)(56, 90)(57, 79)(58, 87)(60, 68)(72, 78)(73, 111)(77,
101)(81, 99)(82, 95)(96, 113)(98, 114)(121, 237)(122, 173)(123, 150)(126,
168)(127, 165)(128, 227)(129, 228)(130, 147)(134, 201)(135, 217)(137, 224)(138,
215)(142, 159)(144, 153)(146, 207)(148, 211)(154, 206)(155, 164)(156, 177)(157,
226)(158, 172)(161, 195)(162, 181)(163, 210)(167, 185)(174, 196)(180, 233)(182,
186)(183, 190)(184, 225)(197, 203)(198, 200)(199, 229)(202, 232)(204, 212)(213,
238)(214, 240)(219, 221)(220, 236)(223, 234)
C4[ 240, 172 ]
240
-1 145 169 193 131
-2 179 169 149 151
-3 199 178 229 131
-4 132 198 200 151
-5 149 216 175 208
-6 122 123 138 229
-7 200 190 159 172
-8 143 178 194 152
-9 132 209 133 188
-10 161 195 239 208
-11 144 123 236 226
-12 190 162 196 186
-13 171 193 141 175
-14 147 203 138 196
-15 121 154 165 172
-16 143 135 205 217
-17 133 144 124 153
-18 210 123 161 173
-19 191 170 181 162
-20 232 145 202 152
-21 188 233 179 180
-22 136 191 239 218
-23 212 236 237 150
-24 183 217 228 186
-25 167 189 171 185
-26 121 220 123 204
-27 200 137 127 217
-28 214 161 153 164
-29 124 125 139 230
-30 231 125 170 192
-31 199 203 204 206
-32 165 198 135 224
-33 176 187 139 205
-34 210 137 129 240
-35 167 147 213 181
-36 211 202 174 207
-37 233 201 138 237
-38 200 168 212 180
-39 177 234 161 217
-40 167 211 190 142
-41 220 157 150 153
-42 212 160 204 140
-43 176 231 166 140
-44 177 156 216 218
-45 122 150 195 163
-46 148 159 183 185
-47 189 222 235 160
-48 211 226 238 164
-49 209 146 207 230
-50 134 201 136 192
-51 132 154 166 206
-52 187 224 137 239
-53 135 190 182 129
-54 167 146 184 153
-55 144 225 185 207
-56 199 201 202 162
-57 165 221 168 186
-58 220 234 227 240
-59 121 134 180 215
-60 177 168 158 129
-61 166 168 235 126
-62 187 223 234 194
-63 144 155 195 240
-64 215 130 174 197
-65 158 127 237 206
-66 199 215 150 173
-67 154 212 229 197
-68 156 126 172 228
-69 210 205 163 218
-70 211 222 124 148
-71 238 162 130 185
-72 213 207 186 219
-73 220 201 128 197
-74 166 124 179 171
-75 187 170 216 131
-76 181 182 183 174
-77 234 226 184 163
-78 221 146 182 238
-79 126 127 182 219
-80 222 225 184 141
-81 154 233 227 173
-82 221 156 137 142
-83 165 179 127 160
-84 143 214 216 240
-85 121 235 237 151
-86 194 129 228 208
-87 223 214 236 128
-88 155 189 164 230
-89 170 138 215 152
-90 232 134 181 229
-91 198 233 126 204
-92 125 169 194 218
-93 209 231 222 149
-94 178 147 192 130
-95 177 224 159 219
-96 155 128 173 184
-97 155 157 213 148
-98 232 130 142 219
-99 122 180 128 206
-100 224 214 228 163
-101 210 157 223 225
-102 198 158 183 142
-103 209 157 171 226
-104 133 213 238 141
-105 132 125 160 175
-106 143 231 193 239
-107 140 151 141 230
-108 145 192 205 208
-109 176 136 152 175
-110 232 146 148 196
-111 134 203 236 227
-112 156 135 223 195
-113 122 225 227 164
-114 221 147 202 159
-115 188 158 172 140
-116 176 133 189 169
-117 188 235 193 139
-118 145 191 203 197
-119 136 174 196 131
-120 178 191 149 139
-121 15 26 59 85
-122 99 45 113 6
-123 11 26 6 18
-124 70 17 29 74
-125 92 105 29 30
-126 68 79 91 61
-127 79 27 83 65
-128 99 73 96 87
-129 34 60 53 86
-130 71 94 64 98
-131 1 3 75 119
-132 4 105 51 9
-133 104 17 116 9
-134 111 90 59 50
-135 112 16 53 32
-136 22 50 119 109
-137 34 27 82 52
-138 89 14 37 6
-139 33 29 117 120
-140 115 107 42 43
-141 13 80 104 107
-142 102 82 40 98
-143 16 84 106 8
-144 11 55 17 63
-145 1 118 20 108
-146 110 78 49 54
-147 35 14 114 94
-148 110 46 70 97
-149 2 5 93 120
-150 66 23 45 41
-151 2 4 85 107
-152 89 8 20 109
-153 17 28 41 54
-154 67 15 81 51
-155 88 63 96 97
-156 44 68 112 82
-157 101 103 41 97
-158 102 60 115 65
-159 46 114 7 95
-160 47 83 105 42
-161 28 39 18 10
-162 12 56 71 19
-163 77 45 100 69
-164 88 113 48 28
-165 57 15 83 32
-166 61 51 74 43
-167 35 25 40 54
-168 57 38 60 61
-169 1 2 92 116
-170 89 19 30 75
-171 13 25 103 74
-172 68 15 115 7
-173 66 81 18 96
-174 36 64 119 76
-175 13 5 105 109
-176 33 116 43 109
-177 44 60 39 95
-178 3 94 8 120
-179 2 83 74 21
-180 99 59 38 21
-181 35 90 19 76
-182 78 79 53 76
-183 24 46 102 76
-184 77 80 96 54
-185 55 46 25 71
-186 12 24 57 72
-187 33 62 52 75
-188 115 117 9 21
-189 88 25 47 116
-190 12 7 40 53
-191 22 19 118 120
-192 50 94 30 108
-193 1 13 106 117
-194 92 62 8 86
-195 45 112 63 10
-196 110 12 14 119
-197 67 73 118 64
-198 91 102 4 32
-199 66 56 3 31
-200 4 27 38 7
-201 56 37 50 73
-202 56 36 114 20
-203 111 14 118 31
-204 91 26 31 42
-205 33 69 16 108
-206 99 51 31 65
-207 55 36 49 72
-208 5 86 108 10
-209 103 49 93 9
-210 34 101 69 18
-211 36 48 70 40
-212 23 67 38 42
-213 35 104 72 97
-214 100 28 84 87
-215 66 89 59 64
-216 44 5 84 75
-217 24 16 27 39
-218 22 44 69 92
-219 79 72 95 98
-220 58 26 73 41
-221 78 57 114 82
-222 47 80 70 93
-223 101 112 62 87
-224 100 95 52 32
-225 55 101 80 113
-226 11 77 48 103
-227 111 58 113 81
-228 100 24 68 86
-229 67 90 3 6
-230 88 49 29 107
-231 93 106 30 43
-232 110 90 20 98
-233 91 37 81 21
-234 77 58 39 62
-235 47 61 117 85
-236 11 23 111 87
-237 23 37 85 65
-238 78 48 71 104
-239 22 106 52 10
-240 34 58 84 63
0