[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 174 ] =
BGCG(UG(ATD[120,54]);K1;{3,6}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {104, 123}, {108, 127}, {97, 121}, {100, 122}, {89, 124}, {87,
127}, {86, 127}, {85, 121}, {80, 125}, {83, 126}, {71, 127}, {69, 123}, {67,
124}, {60, 124}, {59, 122}, {58, 121}, {62, 123}, {61, 123}, {48, 122}, {44,
125}, {43, 125}, {34, 126}, {33, 124}, {31, 121}, {26, 125}, {29, 122}, {8,
126}, {3, 126}, {37, 165}, {49, 177}, {51, 179}, {54, 182}, {84, 212}, {92,
220}, {94, 222}, {106, 234}, {3, 130}, {69, 196}, {15, 142}, {22, 151}, {24,
153}, {40, 169}, {47, 174}, {88, 217}, {104, 233}, {106, 235}, {20, 150}, {101,
231}, {50, 177}, {102, 229}, {6, 130}, {56, 188}, {45, 169}, {67, 198}, {102,
227}, {107, 238}, {30, 152}, {68, 194}, {44, 170}, {88, 222}, {90, 220}, {95,
217}, {55, 176}, {72, 207}, {78, 201}, {103, 224}, {2, 138}, {73, 193}, {60,
180}, {20, 156}, {17, 152}, {65, 200}, {55, 190}, {54, 191}, {33, 168}, {1,
139}, {73, 195}, {3, 137}, {7, 141}, {53, 191}, {87, 221}, {96, 234}, {98, 232},
{106, 224}, {32, 171}, {76, 199}, {63, 180}, {47, 164}, {80, 219}, {94, 213},
{1, 141}, {68, 200}, {26, 150}, {35, 175}, {45, 161}, {100, 232}, {22, 155},
{62, 179}, {95, 210}, {3, 141}, {35, 173}, {37, 171}, {81, 223}, {12, 131}, {79,
192}, {2, 146}, {115, 227}, {21, 133}, {41, 185}, {48, 160}, {87, 199}, {9,
152}, {73, 216}, {36, 181}, {42, 187}, {91, 202}, {112, 225}, {6, 148}, {34,
176}, {46, 188}, {53, 167}, {112, 226}, {1, 146}, {63, 172}, {12, 159}, {50,
161}, {9, 157}, {9, 156}, {64, 213}, {14, 155}, {29, 136}, {46, 187}, {92, 201},
{6, 144}, {76, 218}, {42, 189}, {84, 195}, {4, 156}, {72, 208}, {7, 159}, {38,
190}, {94, 198}, {11, 146}, {17, 136}, {50, 171}, {29, 135}, {120, 226}, {77,
215}, {31, 133}, {33, 187}, {113, 235}, {13, 150}, {118, 237}, {94, 197}, {38,
186}, {60, 160}, {59, 167}, {26, 135}, {90, 199}, {95, 194}, {109, 240}, {44,
178}, {61, 163}, {80, 206}, {82, 204}, {11, 148}, {10, 170}, {61, 157}, {12,
172}, {15, 175}, {43, 139}, {1, 163}, {120, 218}, {117, 215}, {68, 230}, {35,
129}, {36, 134}, {41, 139}, {78, 236}, {52, 151}, {117, 214}, {76, 239}, {67,
224}, {66, 225}, {109, 206}, {17, 181}, {71, 227}, {70, 226}, {52, 144}, {24,
189}, {66, 231}, {32, 133}, {37, 128}, {52, 145}, {11, 173}, {56, 158}, {14,
168}, {16, 182}, {64, 231}, {113, 214}, {18, 186}, {25, 177}, {49, 153}, {49,
152}, {8, 162}, {96, 202}, {5, 174}, {75, 224}, {57, 146}, {27, 176}, {8, 164},
{118, 218}, {10, 166}, {111, 195}, {40, 133}, {71, 234}, {58, 151}, {52, 153},
{97, 204}, {6, 168}, {117, 219}, {66, 236}, {65, 239}, {46, 128}, {102, 200},
{104, 198}, {108, 194}, {5, 170}, {115, 220}, {69, 234}, {51, 156}, {15, 191},
{112, 192}, {21, 164}, {55, 134}, {51, 130}, {95, 238}, {96, 209}, {98, 211},
{107, 218}, {41, 155}, {120, 202}, {99, 209}, {50, 129}, {101, 214}, {18, 166},
{86, 226}, {24, 173}, {112, 197}, {13, 187}, {32, 150}, {115, 197}, {31, 168},
{116, 195}, {63, 136}, {56, 143}, {7, 191}, {20, 172}, {18, 171}, {119, 206},
{61, 132}, {38, 159}, {45, 148}, {109, 212}, {110, 215}, {55, 140}, {30, 162},
{12, 177}, {102, 219}, {14, 176}, {57, 135}, {83, 237}, {34, 157}, {62, 129},
{107, 212}, {91, 155}, {114, 178}, {31, 222}, {76, 142}, {108, 174}, {4, 199},
{117, 182}, {103, 163}, {103, 162}, {11, 205}, {15, 201}, {22, 208}, {79, 137},
{85, 147}, {99, 165}, {73, 142}, {78, 137}, {39, 239}, {72, 128}, {79, 135},
{28, 213}, {57, 240}, {23, 221}, {75, 129}, {46, 228}, {96, 170}, {99, 169},
{111, 165}, {37, 238}, {42, 230}, {114, 190}, {19, 222}, {34, 239}, {17, 223},
{23, 217}, {89, 151}, {16, 223}, {23, 216}, {39, 232}, {40, 231}, {81, 158}, {2,
210}, {114, 162}, {63, 238}, {79, 158}, {85, 132}, {105, 184}, {2, 208}, {116,
166}, {77, 159}, {19, 193}, {27, 201}, {93, 143}, {114, 160}, {28, 207}, {25,
205}, {5, 208}, {93, 136}, {113, 164}, {4, 210}, {14, 216}, {18, 196}, {25,
207}, {26, 204}, {27, 204}, {68, 147}, {28, 203}, {51, 228}, {88, 143}, {89,
142}, {92, 139}, {53, 237}, {119, 175}, {65, 153}, {97, 185}, {30, 196}, {74,
144}, {90, 128}, {103, 189}, {110, 180}, {25, 194}, {75, 144}, {70, 157}, {48,
235}, {81, 138}, {108, 183}, {80, 140}, {10, 215}, {19, 206}, {100, 185}, {19,
205}, {82, 141}, {89, 134}, {91, 132}, {93, 130}, {105, 182}, {5, 229}, {77,
173}, {16, 240}, {88, 184}, {105, 137}, {111, 143}, {58, 219}, {62, 220}, {119,
149}, {64, 163}, {84, 183}, {87, 180}, {93, 190}, {43, 207}, {67, 167}, {110,
138}, {49, 212}, {86, 179}, {10, 236}, {119, 145}, {71, 161}, {13, 235}, {84,
178}, {98, 132}, {101, 131}, {115, 149}, {38, 193}, {72, 175}, {39, 192}, {13,
229}, {100, 140}, {8, 225}, {120, 145}, {69, 172}, {83, 186}, {99, 138}, {57,
211}, {74, 160}, {32, 203}, {78, 165}, {58, 209}, {54, 221}, {28, 240}, {118,
154}, {36, 200}, {81, 189}, {91, 183}, {4, 233}, {7, 233}, {86, 184}, {9, 230},
{41, 198}, {43, 196}, {83, 188}, {22, 230}, {59, 203}, {106, 154}, {16, 225},
{21, 228}, {39, 214}, {35, 209}, {74, 184}, {65, 179}, {92, 174}, {33, 210},
{56, 203}, {44, 223}, {29, 233}, {70, 178}, {45, 217}, {82, 166}, {85, 161},
{97, 149}, {110, 154}, {24, 237}, {118, 131}, {66, 183}, {48, 197}, {53, 192},
{107, 158}, {21, 227}, {60, 202}, {101, 147}, {47, 216}, {116, 131}, {75, 188},
{113, 134}, {77, 181}, {116, 140}, {98, 154}, {36, 221}, {42, 211}, {47, 213},
{64, 186}, {59, 193}, {23, 236}, {54, 205}, {30, 229}, {40, 211}, {82, 169},
{20, 232}, {104, 148}, {105, 149}, {90, 167}, {109, 147}, {111, 145}, {27, 228},
{74, 181}, {70, 185} }>;
(II) A more general form is to represent the graph as the orbit of {104, 123}
under the group generated by the following permutations:
a: (1, 2, 4, 9, 17, 36, 55, 80, 19, 31, 32, 50, 75, 106, 118, 120, 112, 66, 78,
92)(3, 5, 7, 22, 29, 68, 93, 102, 38, 58, 59, 85, 56, 71, 83, 96, 53, 91, 79,
108)(6, 13, 12, 52, 48, 101, 111, 115, 64, 99, 90, 61, 81, 87, 34, 44, 54, 14,
26, 25)(8, 10, 15, 41, 57, 95, 51, 30, 77, 89, 100, 109, 88, 21, 18, 35, 67, 98,
107, 86)(11, 33, 20, 49, 74, 113, 116, 119, 94, 40, 37, 62, 103, 110, 76, 70,
16, 23, 27, 43)(24, 60, 39, 84, 105, 47, 82, 72, 104, 42, 63, 65, 114, 117, 73,
97, 28, 45, 46, 69)(121, 203, 161, 188, 234, 237, 202, 192, 183, 137, 174, 141,
208, 233, 230, 136, 200, 190, 219, 193)(122, 147, 143, 227, 186, 209, 167, 132,
158, 127, 126, 170, 191, 155, 135, 194, 130, 229, 159, 151)(123, 189, 180, 239,
178, 182, 216, 204, 207, 148, 187, 172, 153, 160, 214, 195, 149, 213, 169,
128)(124, 232, 212, 184, 164, 166, 175, 198, 211, 238, 179, 162, 215, 142, 185,
240, 217, 228, 196, 173)(125, 205, 168, 150, 177, 144, 235, 131, 145, 197, 231,
165, 220, 163, 138, 199, 157, 223, 221, 176)(129, 224, 154, 218, 226, 225, 236,
201, 139, 146, 210, 156, 152, 181, 134, 140, 206, 222, 133, 171) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 103, 3, 92)(4, 67, 6, 62)(5, 81, 8, 78)(7, 41, 11, 61)(9, 53, 14, 35)(10,
44, 16, 66)(12, 100, 19, 85)(13, 56, 21, 37)(15, 22, 24, 34)(17, 112, 23,
96)(18, 26, 28, 40)(20, 59, 31, 50)(25, 98, 38, 97)(27, 72, 42, 83)(29, 94, 45,
69)(30, 79, 47, 99)(33, 75, 51, 90)(36, 120)(39, 73, 58, 49)(43, 57, 64, 82)(48,
88, 71, 63)(52, 65, 76, 89)(54, 91, 77, 70)(55, 119, 68, 118)(60, 74, 86,
87)(80, 109, 101, 116)(84, 117)(93, 115, 95, 106)(102, 107, 113, 111)(105, 108,
110, 114)(121, 177, 232, 193)(122, 222, 161, 172)(123, 233, 198, 148)(124, 144,
179, 199)(125, 240, 231, 166)(126, 201, 208, 189)(127, 180, 160, 184)(128, 187,
188, 228)(129, 156, 167, 168)(130, 220, 210, 224)(131, 140, 206, 147)(132, 159,
185, 205)(133, 171, 150, 203)(134, 145, 200, 218)(135, 213, 169, 196)(136, 197,
217, 234)(137, 174, 138, 162)(139, 146, 163, 141)(142, 151, 153, 239)(143, 227,
238, 235)(149, 194, 154, 190)(152, 192, 216, 209)(155, 173, 157, 191)(158, 164,
165, 229)(170, 223, 225, 236)(175, 230, 237, 176)(178, 182, 183, 215)(181, 226,
221, 202)(186, 204, 207, 211)(195, 219, 212, 214)
C4[ 240, 174 ]
240
-1 146 139 141 163
-2 210 146 138 208
-3 126 137 130 141
-4 199 210 156 233
-5 170 174 229 208
-6 144 168 148 130
-7 233 191 159 141
-8 126 225 162 164
-9 156 157 152 230
-10 166 170 236 215
-11 146 148 205 173
-12 177 159 172 131
-13 187 235 150 229
-14 176 155 168 216
-15 201 191 142 175
-16 223 225 182 240
-17 223 136 181 152
-18 166 171 196 186
-19 222 193 205 206
-20 232 156 150 172
-21 133 227 228 164
-22 155 151 208 230
-23 221 236 216 217
-24 189 237 173 153
-25 177 194 205 207
-26 135 125 204 150
-27 176 201 204 228
-28 213 203 207 240
-29 122 233 135 136
-30 162 152 196 229
-31 121 133 222 168
-32 133 203 171 150
-33 187 210 124 168
-34 176 157 126 239
-35 209 129 173 175
-36 221 134 200 181
-37 165 171 128 238
-38 190 159 193 186
-39 232 192 214 239
-40 231 133 211 169
-41 198 155 139 185
-42 187 189 211 230
-43 125 139 196 207
-44 178 223 125 170
-45 169 148 161 217
-46 187 188 128 228
-47 213 216 174 164
-48 122 235 160 197
-49 177 212 152 153
-50 177 171 161 129
-51 156 179 228 130
-52 144 145 151 153
-53 167 191 192 237
-54 221 191 182 205
-55 176 134 190 140
-56 143 188 158 203
-57 211 135 146 240
-58 121 209 151 219
-59 122 167 203 193
-60 124 180 202 160
-61 132 123 157 163
-62 220 123 179 129
-63 136 180 172 238
-64 231 213 163 186
-65 200 179 239 153
-66 231 225 236 183
-67 198 167 124 224
-68 200 147 194 230
-69 123 234 172 196
-70 178 157 226 185
-71 234 127 161 227
-72 128 207 175 208
-73 193 216 195 142
-74 144 181 160 184
-75 144 188 224 129
-76 199 239 218 142
-77 159 181 215 173
-78 165 201 137 236
-79 135 158 137 192
-80 125 140 206 219
-81 189 223 158 138
-82 166 169 204 141
-83 188 126 237 186
-84 178 212 183 195
-85 121 132 147 161
-86 179 127 226 184
-87 199 221 180 127
-88 143 222 184 217
-89 134 124 151 142
-90 220 199 167 128
-91 132 155 202 183
-92 220 201 139 174
-93 143 190 136 130
-94 198 222 213 197
-95 210 194 238 217
-96 209 234 202 170
-97 121 149 204 185
-98 132 154 232 211
-99 165 209 169 138
-100 122 232 140 185
-101 231 147 214 131
-102 200 227 229 219
-103 189 224 162 163
-104 198 123 233 148
-105 137 149 182 184
-106 154 234 224 235
-107 212 158 238 218
-108 127 183 194 174
-109 212 147 206 240
-110 154 180 138 215
-111 143 165 145 195
-112 192 225 226 197
-113 134 235 214 164
-114 178 190 160 162
-115 220 149 227 197
-116 166 140 195 131
-117 214 182 215 219
-118 154 237 218 131
-119 145 149 206 175
-120 145 202 226 218
-121 58 85 31 97
-122 100 48 59 29
-123 69 104 61 62
-124 33 67 89 60
-125 44 80 26 43
-126 34 3 83 8
-127 71 86 108 87
-128 46 90 37 72
-129 35 50 62 75
-130 3 93 6 51
-131 12 101 116 118
-132 91 61 85 98
-133 40 31 21 32
-134 55 89 36 113
-135 57 79 26 29
-136 93 17 29 63
-137 78 79 3 105
-138 99 110 2 81
-139 1 92 41 43
-140 55 100 80 116
-141 1 3 82 7
-142 89 15 73 76
-143 88 56 111 93
-144 6 52 74 75
-145 111 52 119 120
-146 11 1 2 57
-147 68 101 85 109
-148 11 45 104 6
-149 115 105 97 119
-150 13 26 20 32
-151 22 89 58 52
-152 49 17 30 9
-153 24 49 52 65
-154 110 106 118 98
-155 22 14 91 41
-156 4 51 9 20
-157 34 70 61 9
-158 56 79 81 107
-159 77 12 38 7
-160 48 114 60 74
-161 45 71 50 85
-162 103 114 8 30
-163 1 103 61 64
-164 47 113 8 21
-165 99 78 111 37
-166 82 116 18 10
-167 67 90 59 53
-168 33 14 6 31
-169 99 45 82 40
-170 44 5 96 10
-171 37 50 18 32
-172 12 69 63 20
-173 11 77 24 35
-174 47 92 5 108
-175 35 15 72 119
-176 55 34 14 27
-177 12 25 49 50
-178 44 70 114 84
-179 51 62 86 65
-180 110 60 63 87
-181 77 36 17 74
-182 16 105 117 54
-183 66 91 84 108
-184 88 105 74 86
-185 100 70 41 97
-186 38 83 18 64
-187 33 13 46 42
-188 56 46 83 75
-189 24 81 103 42
-190 55 114 38 93
-191 15 7 53 54
-192 79 112 39 53
-193 59 38 73 19
-194 68 25 95 108
-195 111 116 73 84
-196 69 18 30 43
-197 112 48 115 94
-198 67 104 94 41
-199 90 4 76 87
-200 68 36 102 65
-201 78 15 92 27
-202 91 60 96 120
-203 56 59 28 32
-204 26 27 82 97
-205 11 25 19 54
-206 80 19 119 109
-207 25 28 72 43
-208 22 2 5 72
-209 99 35 58 96
-210 33 2 4 95
-211 57 40 42 98
-212 49 84 107 109
-213 47 28 94 64
-214 101 113 39 117
-215 77 110 117 10
-216 23 14 47 73
-217 88 23 45 95
-218 107 118 76 120
-219 58 80 102 117
-220 90 92 115 62
-221 23 36 54 87
-222 88 94 19 31
-223 44 81 16 17
-224 67 103 106 75
-225 66 112 16 8
-226 112 70 86 120
-227 102 71 115 21
-228 46 27 51 21
-229 13 102 5 30
-230 22 68 9 42
-231 66 101 40 64
-232 100 39 20 98
-233 4 104 7 29
-234 69 71 106 96
-235 13 113 48 106
-236 66 23 78 10
-237 24 83 118 53
-238 37 95 63 107
-239 34 39 65 76
-240 57 16 28 109
0