C4graphGraph forms for C4 [ 240, 175 ] = BGCG(UG(ATD[120,54]);K1;{12,14})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 175 ] = BGCG(UG(ATD[120,54]);K1;{12,14}).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {120, 122}, {112, 122}, {101, 125}, {96, 121}, {102, 124}, {90, 122}, {84, 125}, {81, 123}, {87, 122}, {73, 125}, {73, 127}, {67, 127}, {64, 125}, {56, 123}, {55, 126}, {52, 126}, {51, 124}, {47, 127}, {41, 127}, {35, 121}, {36, 126}, {37, 121}, {30, 124}, {20, 124}, {18, 121}, {8, 123}, {3, 123}, {6, 126}, {15, 143}, {60, 188}, {59, 187}, {25, 153}, {105, 233}, {19, 146}, {74, 203}, {66, 195}, {57, 184}, {53, 180}, {79, 206}, {95, 222}, {97, 224}, {106, 235}, {5, 135}, {55, 181}, {51, 177}, {47, 172}, {71, 196}, {62, 189}, {5, 129}, {27, 159}, {44, 168}, {91, 223}, {26, 159}, {23, 145}, {28, 154}, {29, 155}, {32, 166}, {88, 222}, {69, 194}, {69, 205}, {72, 192}, {97, 233}, {107, 227}, {5, 140}, {62, 183}, {41, 160}, {84, 221}, {89, 208}, {17, 155}, {70, 204}, {65, 203}, {40, 162}, {49, 186}, {4, 136}, {25, 149}, {80, 220}, {10, 135}, {33, 172}, {2, 140}, {7, 136}, {8, 135}, {15, 128}, {29, 146}, {98, 237}, {108, 227}, {46, 190}, {49, 161}, {39, 182}, {70, 215}, {64, 209}, {43, 186}, {50, 163}, {52, 165}, {81, 192}, {12, 158}, {54, 164}, {15, 157}, {49, 163}, {2, 145}, {67, 208}, {3, 144}, {85, 198}, {7, 147}, {42, 190}, {85, 193}, {90, 206}, {12, 153}, {64, 213}, {36, 177}, {6, 144}, {67, 213}, {22, 128}, {112, 230}, {16, 135}, {24, 143}, {46, 185}, {3, 155}, {116, 236}, {76, 212}, {91, 195}, {7, 158}, {117, 236}, {60, 165}, {13, 151}, {27, 129}, {86, 204}, {94, 196}, {27, 128}, {115, 232}, {50, 169}, {1, 157}, {67, 223}, {61, 161}, {15, 147}, {18, 142}, {42, 182}, {88, 196}, {55, 170}, {69, 216}, {84, 201}, {70, 216}, {2, 157}, {68, 219}, {62, 161}, {39, 184}, {94, 193}, {4, 164}, {119, 215}, {75, 235}, {54, 150}, {10, 170}, {17, 177}, {30, 190}, {41, 137}, {79, 239}, {97, 193}, {98, 194}, {42, 139}, {68, 229}, {11, 169}, {12, 174}, {20, 182}, {43, 137}, {100, 198}, {105, 203}, {40, 139}, {66, 225}, {99, 192}, {11, 175}, {99, 199}, {33, 132}, {59, 158}, {85, 240}, {107, 206}, {2, 164}, {118, 208}, {68, 226}, {35, 133}, {100, 194}, {21, 178}, {118, 209}, {48, 151}, {45, 133}, {120, 208}, {63, 151}, {37, 140}, {76, 229}, {71, 238}, {41, 128}, {104, 193}, {13, 167}, {103, 205}, {104, 194}, {109, 198}, {113, 218}, {24, 180}, {56, 148}, {40, 132}, {32, 141}, {96, 205}, {102, 203}, {9, 167}, {47, 129}, {39, 136}, {76, 227}, {46, 129}, {78, 225}, {37, 149}, {81, 225}, {34, 147}, {39, 150}, {98, 211}, {108, 221}, {7, 181}, {116, 198}, {63, 141}, {20, 166}, {26, 168}, {38, 148}, {82, 224}, {88, 234}, {90, 232}, {93, 239}, {19, 160}, {31, 172}, {48, 131}, {38, 146}, {44, 152}, {45, 153}, {50, 134}, {1, 180}, {118, 195}, {63, 138}, {86, 227}, {103, 210}, {5, 179}, {60, 138}, {59, 141}, {8, 190}, {17, 167}, {38, 144}, {3, 180}, {116, 195}, {24, 175}, {58, 130}, {103, 223}, {22, 175}, {8, 178}, {19, 169}, {102, 220}, {109, 215}, {92, 231}, {106, 209}, {114, 201}, {115, 200}, {45, 145}, {19, 174}, {25, 164}, {26, 167}, {95, 226}, {98, 223}, {110, 211}, {13, 179}, {14, 176}, {35, 157}, {82, 236}, {101, 219}, {30, 161}, {31, 160}, {101, 218}, {114, 205}, {83, 147}, {109, 173}, {6, 199}, {24, 217}, {28, 221}, {36, 229}, {87, 150}, {105, 168}, {22, 212}, {78, 140}, {10, 201}, {45, 238}, {22, 210}, {71, 131}, {100, 160}, {34, 231}, {120, 189}, {89, 156}, {95, 154}, {107, 173}, {47, 232}, {120, 191}, {79, 136}, {108, 171}, {74, 130}, {77, 133}, {74, 131}, {111, 165}, {119, 189}, {16, 219}, {37, 238}, {87, 156}, {101, 174}, {11, 199}, {16, 220}, {40, 228}, {106, 166}, {110, 162}, {16, 221}, {118, 187}, {117, 184}, {75, 134}, {61, 240}, {17, 220}, {23, 218}, {44, 225}, {65, 143}, {25, 214}, {77, 130}, {90, 149}, {10, 218}, {93, 141}, {9, 216}, {63, 238}, {21, 196}, {56, 234}, {72, 154}, {69, 151}, {88, 138}, {1, 210}, {53, 230}, {93, 142}, {57, 237}, {119, 163}, {87, 131}, {103, 179}, {109, 184}, {58, 236}, {89, 143}, {97, 183}, {29, 202}, {117, 162}, {65, 150}, {31, 200}, {82, 133}, {114, 165}, {23, 207}, {31, 197}, {48, 234}, {51, 233}, {9, 210}, {57, 226}, {18, 201}, {89, 130}, {95, 132}, {112, 171}, {51, 239}, {86, 138}, {77, 144}, {117, 168}, {83, 142}, {112, 173}, {113, 172}, {13, 211}, {56, 230}, {27, 197}, {75, 148}, {96, 191}, {52, 212}, {66, 162}, {53, 213}, {4, 229}, {71, 166}, {106, 139}, {111, 142}, {81, 179}, {9, 237}, {61, 217}, {20, 240}, {99, 134}, {1, 231}, {6, 224}, {114, 148}, {72, 175}, {77, 170}, {82, 181}, {86, 177}, {91, 188}, {99, 132}, {32, 200}, {62, 214}, {83, 187}, {93, 181}, {4, 237}, {11, 226}, {14, 231}, {111, 134}, {14, 228}, {80, 186}, {83, 185}, {36, 207}, {72, 163}, {91, 176}, {92, 183}, {50, 222}, {116, 152}, {61, 209}, {115, 159}, {54, 219}, {113, 156}, {14, 224}, {33, 207}, {46, 192}, {84, 186}, {92, 178}, {94, 176}, {66, 173}, {64, 176}, {76, 188}, {21, 228}, {70, 183}, {104, 153}, {107, 154}, {33, 211}, {73, 187}, {68, 182}, {55, 197}, {105, 155}, {110, 156}, {23, 228}, {60, 207}, {57, 202}, {38, 213}, {42, 217}, {43, 216}, {28, 232}, {75, 191}, {26, 239}, {74, 191}, {73, 188}, {59, 206}, {30, 235}, {35, 214}, {94, 171}, {34, 212}, {79, 185}, {29, 234}, {78, 185}, {92, 171}, {111, 152}, {48, 200}, {52, 204}, {96, 152}, {18, 235}, {102, 159}, {108, 149}, {28, 230}, {80, 170}, {100, 158}, {104, 146}, {113, 139}, {115, 137}, {34, 217}, {44, 215}, {12, 240}, {78, 178}, {65, 189}, {54, 202}, {21, 233}, {85, 169}, {43, 214}, {58, 199}, {49, 204}, {32, 222}, {119, 137}, {80, 174}, {53, 202}, {58, 197}, {110, 145} }>;

(II) A more general form is to represent the graph as the orbit of {120, 122} under the group generated by the following permutations:

a: (1, 2)(3, 110)(4, 92)(5, 103)(6, 87)(7, 62)(8, 98)(9, 78)(10, 67)(11, 71)(12, 61)(13, 81)(14, 54)(15, 35)(16, 91)(17, 66)(18, 41)(19, 106)(20, 85)(21, 57)(22, 37)(23, 53)(24, 45)(25, 34)(26, 44)(27, 96)(28, 60)(29, 40)(30, 100)(31, 75)(32, 50)(33, 56)(36, 112)(38, 113)(39, 97)(42, 104)(43, 83)(46, 69)(47, 114)(48, 99)(49, 59)(51, 109)(52, 90)(55, 120)(58, 74)(63, 72)(64, 101)(65, 82)(68, 94)(70, 79)(73, 84)(76, 108)(77, 89)(80, 118)(86, 107)(88, 95)(93, 119)(102, 116)(105, 117)(111, 115)(121, 128)(122, 126)(123, 211)(124, 198)(127, 201)(129, 205)(131, 199)(132, 234)(133, 143)(134, 200)(135, 223)(136, 183)(137, 142)(138, 154)(139, 146)(140, 210)(141, 163)(144, 156)(145, 180)(147, 214)(148, 172)(149, 212)(150, 224)(151, 192)(152, 159)(153, 217)(155, 162)(158, 161)(160, 235)(164, 231)(165, 232)(166, 169)(167, 225)(170, 208)(171, 229)(173, 177)(174, 209)(175, 238)(176, 219)(178, 237)(181, 189)(182, 193)(184, 233)(185, 216)(186, 187)(188, 221)(190, 194)(191, 197)(195, 220)(196, 226)(202, 228)(203, 236)(204, 206)(207, 230)(213, 218)(215, 239)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 23)(18, 28)(20, 31)(22, 34)(25, 38)(26, 40)(27, 42)(29, 45)(30, 47)(33, 51)(35, 53)(37, 56)(39, 58)(41, 61)(43, 64)(44, 66)(48, 71)(49, 73)(50, 59)(52, 76)(54, 77)(55, 68)(57, 82)(60, 86)(62, 67)(63, 88)(65, 89)(69, 94)(70, 91)(72, 83)(74, 87)(75, 90)(78, 81)(79, 99)(80, 101)(85, 100)(92, 103)(93, 95)(96, 112)(97, 98)(102, 113)(105, 110)(106, 115)(107, 111)(108, 114)(109, 116)(118, 119)(121, 230)(122, 191)(123, 140)(124, 172)(125, 186)(126, 229)(127, 161)(128, 217)(129, 190)(130, 150)(132, 239)(133, 202)(134, 206)(136, 199)(137, 209)(139, 159)(141, 222)(142, 154)(144, 164)(145, 155)(146, 153)(147, 175)(148, 149)(151, 196)(152, 173)(156, 203)(157, 180)(158, 169)(160, 240)(162, 168)(163, 187)(165, 227)(166, 200)(167, 228)(170, 219)(171, 205)(176, 216)(177, 207)(178, 179)(181, 226)(182, 197)(183, 223)(184, 236)(185, 192)(188, 204)(189, 208)(193, 194)(195, 215)(201, 221)(210, 231)(211, 233)(213, 214)(218, 220)(224, 237)(232, 235)(234, 238)
c: (2, 92, 3, 103)(4, 62, 6, 67)(5, 78, 8, 81)(7, 61, 11, 41)(9, 35, 14, 53)(10, 66, 16, 44)(12, 85, 19, 100)(13, 37, 21, 56)(15, 34, 24, 22)(17, 96, 23, 112)(18, 40, 28, 26)(20, 50, 31, 59)(25, 97, 38, 98)(27, 83, 42, 72)(29, 69, 45, 94)(30, 99, 47, 79)(33, 90, 51, 75)(36, 120)(39, 49, 58, 73)(43, 82, 64, 57)(48, 63, 71, 88)(52, 89, 76, 65)(54, 70, 77, 91)(55, 118, 68, 119)(60, 87, 86, 74)(80, 116, 101, 109)(84, 117)(93, 106, 95, 115)(102, 111, 113, 107)(105, 114, 110, 108)(121, 228, 230, 167)(122, 177, 191, 207)(123, 179, 140, 178)(124, 134, 172, 206)(125, 184, 186, 236)(126, 208, 229, 189)(127, 136, 161, 199)(128, 147, 217, 175)(129, 185, 190, 192)(130, 188, 150, 204)(131, 138)(132, 232, 239, 235)(133, 176, 202, 216)(135, 225)(137, 181, 209, 226)(139, 154, 159, 142)(141, 166, 222, 200)(143, 212)(144, 223, 164, 183)(145, 171, 155, 205)(146, 194, 153, 193)(148, 211, 149, 233)(151, 238, 196, 234)(152, 218, 173, 220)(156, 227, 203, 165)(157, 231, 180, 210)(158, 240, 169, 160)(162, 221, 168, 201)(163, 197, 187, 182)(170, 195, 219, 215)(174, 198)(213, 237, 214, 224)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 175 ]
240
-1 231 210 157 180
-2 145 157 140 164
-3 144 155 123 180
-4 136 237 229 164
-5 135 179 129 140
-6 144 199 224 126
-7 136 147 158 181
-8 123 178 135 190
-9 210 167 237 216
-10 135 201 170 218
-11 199 169 226 175
-12 158 174 240 153
-13 167 211 179 151
-14 176 231 224 228
-15 143 157 147 128
-16 220 221 135 219
-17 220 155 177 167
-18 121 201 235 142
-19 146 169 160 174
-20 166 124 182 240
-21 178 233 228 196
-22 210 212 128 175
-23 145 228 207 218
-24 143 180 217 175
-25 214 149 153 164
-26 167 168 159 239
-27 159 128 129 197
-28 154 221 232 230
-29 155 146 234 202
-30 124 190 235 161
-31 200 160 172 197
-32 166 200 222 141
-33 132 211 172 207
-34 231 212 147 217
-35 121 133 157 214
-36 177 126 207 229
-37 121 149 238 140
-38 144 146 213 148
-39 136 182 150 184
-40 132 139 162 228
-41 137 127 160 128
-42 190 182 139 217
-43 137 214 216 186
-44 168 225 215 152
-45 133 145 238 153
-46 190 192 129 185
-47 232 127 172 129
-48 200 234 151 131
-49 204 161 163 186
-50 134 222 169 163
-51 177 233 124 239
-52 165 212 126 204
-53 180 202 213 230
-54 202 150 164 219
-55 126 170 181 197
-56 123 234 148 230
-57 202 226 237 184
-58 199 236 130 197
-59 187 158 206 141
-60 165 188 138 207
-61 209 161 217 240
-62 189 214 161 183
-63 138 238 151 141
-64 176 209 125 213
-65 143 189 203 150
-66 225 162 173 195
-67 223 213 127 208
-68 182 226 229 219
-69 194 205 216 151
-70 204 215 183 216
-71 166 238 196 131
-72 154 192 163 175
-73 187 188 125 127
-74 191 203 130 131
-75 134 191 235 148
-76 188 212 227 229
-77 133 144 170 130
-78 178 225 140 185
-79 136 206 239 185
-80 220 170 174 186
-81 123 179 192 225
-82 133 224 181 236
-83 187 147 185 142
-84 221 201 125 186
-85 198 169 193 240
-86 177 138 204 227
-87 122 156 150 131
-88 222 234 138 196
-89 143 156 130 208
-90 122 232 149 206
-91 176 188 223 195
-92 231 178 171 183
-93 181 239 141 142
-94 176 171 193 196
-95 132 154 222 226
-96 121 191 205 152
-97 233 224 193 183
-98 211 223 237 194
-99 132 199 134 192
-100 198 158 160 194
-101 125 174 218 219
-102 220 124 159 203
-103 210 179 223 205
-104 146 193 194 153
-105 155 233 168 203
-106 209 166 235 139
-107 154 227 173 206
-108 221 149 171 227
-109 198 215 173 184
-110 145 156 211 162
-111 165 134 152 142
-112 122 171 173 230
-113 156 139 172 218
-114 165 201 148 205
-115 232 200 137 159
-116 198 236 195 152
-117 168 236 162 184
-118 187 209 195 208
-119 189 137 215 163
-120 122 189 191 208
-121 35 37 18 96
-122 90 112 87 120
-123 56 3 81 8
-124 102 51 30 20
-125 101 73 84 64
-126 55 36 6 52
-127 67 47 73 41
-128 22 15 27 41
-129 46 47 5 27
-130 77 89 58 74
-131 48 71 74 87
-132 33 99 40 95
-133 77 45 35 82
-134 99 111 50 75
-135 5 16 8 10
-136 79 4 39 7
-137 115 41 119 43
-138 88 60 63 86
-139 113 40 106 42
-140 78 2 37 5
-141 59 93 63 32
-142 111 93 83 18
-143 89 24 15 65
-144 77 3 38 6
-145 110 23 45 2
-146 38 104 29 19
-147 34 15 83 7
-148 56 114 38 75
-149 90 25 37 108
-150 39 54 65 87
-151 13 69 48 63
-152 44 111 116 96
-153 12 45 25 104
-154 28 72 95 107
-155 3 17 105 29
-156 110 89 113 87
-157 1 2 35 15
-158 12 100 59 7
-159 102 26 27 115
-160 100 19 41 31
-161 49 61 62 30
-162 66 110 40 117
-163 49 50 72 119
-164 2 25 4 54
-165 111 114 60 52
-166 71 106 20 32
-167 13 26 17 9
-168 44 26 105 117
-169 11 50 19 85
-170 55 77 80 10
-171 112 92 94 108
-172 33 47 113 31
-173 66 112 107 109
-174 12 101 80 19
-175 11 22 24 72
-176 14 91 94 64
-177 36 17 51 86
-178 78 92 8 21
-179 13 81 103 5
-180 1 24 3 53
-181 55 82 93 7
-182 68 39 20 42
-183 70 92 62 97
-184 57 39 117 109
-185 78 46 79 83
-186 80 49 84 43
-187 59 83 73 118
-188 91 60 73 76
-189 62 119 65 120
-190 46 8 30 42
-191 74 96 75 120
-192 99 46 81 72
-193 104 94 85 97
-194 100 69 104 98
-195 66 91 116 118
-196 88 71 94 21
-197 55 58 27 31
-198 100 116 85 109
-199 11 99 58 6
-200 48 115 31 32
-201 114 18 84 10
-202 57 29 53 54
-203 102 105 74 65
-204 70 49 52 86
-205 69 103 114 96
-206 79 90 59 107
-207 33 23 36 60
-208 67 89 118 120
-209 61 106 118 64
-210 22 1 103 9
-211 33 110 13 98
-212 22 34 52 76
-213 67 38 53 64
-214 35 25 62 43
-215 44 70 119 109
-216 69 70 9 43
-217 34 24 61 42
-218 23 101 113 10
-219 68 101 16 54
-220 80 102 16 17
-221 16 28 84 108
-222 88 50 95 32
-223 67 91 103 98
-224 14 82 6 97
-225 44 66 78 81
-226 11 57 68 95
-227 107 86 108 76
-228 23 14 40 21
-229 68 36 4 76
-230 56 112 28 53
-231 1 34 14 92
-232 90 47 115 28
-233 105 51 97 21
-234 88 56 48 29
-235 18 106 30 75
-236 58 82 116 117
-237 57 4 9 98
-238 45 37 71 63
-239 79 26 93 51
-240 12 61 85 20
0

**************