C4graphGraph forms for C4 [ 240, 176 ] = BGCG(UG(ATD[120,54]);K1;{13,15})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 176 ] = BGCG(UG(ATD[120,54]);K1;{13,15}).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {113, 121}, {118, 123}, {105, 123}, {97, 125}, {89, 121}, {95, 126}, {83, 123}, {72, 122}, {73, 127}, {77, 122}, {70, 125}, {49, 121}, {51, 127}, {52, 121}, {47, 127}, {43, 126}, {35, 122}, {32, 124}, {33, 125}, {34, 124}, {33, 126}, {31, 125}, {31, 124}, {28, 122}, {25, 126}, {21, 127}, {14, 124}, {3, 123}, {35, 163}, {51, 179}, {92, 220}, {108, 236}, {69, 196}, {79, 206}, {95, 222}, {8, 138}, {72, 202}, {83, 209}, {86, 212}, {3, 128}, {107, 232}, {7, 131}, {58, 190}, {40, 172}, {45, 169}, {52, 176}, {92, 216}, {102, 226}, {9, 140}, {75, 206}, {87, 210}, {88, 221}, {110, 235}, {23, 145}, {29, 155}, {107, 237}, {7, 128}, {68, 195}, {66, 197}, {78, 201}, {8, 128}, {69, 205}, {77, 197}, {81, 217}, {97, 233}, {13, 132}, {80, 217}, {23, 157}, {55, 189}, {26, 144}, {30, 148}, {34, 168}, {36, 174}, {45, 167}, {19, 152}, {25, 146}, {40, 163}, {46, 165}, {93, 214}, {12, 128}, {56, 180}, {106, 230}, {30, 147}, {74, 199}, {44, 161}, {17, 159}, {60, 178}, {24, 150}, {83, 221}, {22, 153}, {59, 180}, {36, 171}, {42, 165}, {25, 137}, {62, 174}, {96, 240}, {113, 225}, {80, 193}, {16, 130}, {20, 134}, {78, 220}, {17, 130}, {6, 146}, {68, 208}, {45, 185}, {31, 138}, {38, 179}, {9, 159}, {73, 223}, {67, 213}, {46, 184}, {43, 188}, {119, 224}, {113, 230}, {4, 156}, {120, 224}, {55, 175}, {15, 151}, {29, 133}, {39, 191}, {11, 146}, {61, 164}, {19, 138}, {15, 149}, {115, 233}, {68, 222}, {1, 154}, {10, 145}, {93, 198}, {8, 148}, {119, 235}, {24, 132}, {55, 171}, {84, 200}, {85, 201}, {16, 141}, {62, 163}, {49, 172}, {2, 156}, {13, 147}, {17, 143}, {47, 177}, {94, 192}, {21, 138}, {117, 234}, {114, 210}, {24, 185}, {76, 237}, {31, 190}, {44, 141}, {77, 236}, {109, 204}, {114, 211}, {41, 139}, {118, 212}, {61, 159}, {49, 147}, {27, 184}, {72, 235}, {69, 230}, {68, 231}, {65, 226}, {19, 183}, {116, 208}, {71, 227}, {37, 129}, {40, 140}, {103, 195}, {16, 181}, {53, 144}, {109, 200}, {4, 162}, {74, 236}, {72, 238}, {42, 140}, {50, 149}, {79, 232}, {102, 193}, {38, 142}, {63, 151}, {104, 192}, {101, 204}, {12, 166}, {52, 158}, {9, 162}, {73, 226}, {60, 151}, {36, 143}, {115, 216}, {49, 157}, {120, 212}, {75, 231}, {13, 160}, {74, 231}, {18, 191}, {28, 177}, {96, 205}, {42, 132}, {116, 218}, {76, 226}, {50, 157}, {18, 162}, {41, 153}, {45, 157}, {114, 195}, {115, 194}, {4, 182}, {5, 183}, {11, 185}, {33, 147}, {103, 213}, {90, 233}, {102, 213}, {27, 175}, {48, 132}, {89, 237}, {2, 183}, {119, 194}, {116, 193}, {59, 142}, {10, 191}, {32, 149}, {51, 134}, {98, 215}, {101, 208}, {112, 197}, {6, 176}, {35, 149}, {46, 152}, {53, 131}, {6, 177}, {118, 193}, {100, 220}, {2, 187}, {23, 174}, {39, 158}, {110, 215}, {1, 187}, {26, 160}, {86, 236}, {114, 200}, {26, 161}, {119, 204}, {58, 129}, {50, 137}, {54, 141}, {82, 233}, {11, 183}, {57, 133}, {30, 162}, {8, 181}, {44, 145}, {92, 225}, {113, 204}, {38, 152}, {57, 135}, {100, 218}, {14, 177}, {54, 137}, {91, 228}, {111, 208}, {46, 238}, {66, 130}, {86, 150}, {99, 163}, {112, 176}, {33, 224}, {88, 153}, {100, 165}, {104, 169}, {29, 223}, {75, 137}, {18, 209}, {36, 231}, {77, 142}, {101, 166}, {103, 164}, {108, 175}, {110, 173}, {5, 192}, {14, 203}, {32, 229}, {94, 153}, {98, 165}, {67, 139}, {120, 176}, {57, 240}, {117, 188}, {19, 217}, {117, 191}, {70, 140}, {99, 169}, {106, 160}, {30, 213}, {83, 152}, {18, 222}, {75, 135}, {67, 143}, {102, 170}, {107, 167}, {43, 230}, {17, 223}, {120, 182}, {47, 225}, {88, 150}, {89, 151}, {112, 190}, {10, 197}, {117, 186}, {20, 219}, {10, 218}, {58, 234}, {100, 180}, {109, 189}, {22, 199}, {69, 148}, {82, 131}, {110, 188}, {35, 240}, {67, 144}, {105, 186}, {7, 211}, {79, 155}, {90, 142}, {3, 214}, {78, 155}, {13, 219}, {118, 160}, {89, 143}, {96, 182}, {107, 189}, {1, 214}, {70, 145}, {65, 150}, {58, 237}, {4, 211}, {12, 219}, {21, 194}, {24, 207}, {93, 133}, {109, 181}, {1, 216}, {20, 205}, {91, 130}, {97, 184}, {115, 170}, {28, 198}, {82, 136}, {90, 129}, {105, 178}, {22, 202}, {60, 224}, {23, 203}, {84, 136}, {71, 154}, {91, 134}, {5, 219}, {5, 218}, {65, 158}, {64, 159}, {62, 225}, {48, 239}, {79, 144}, {101, 186}, {15, 239}, {43, 203}, {85, 181}, {94, 190}, {12, 238}, {41, 203}, {99, 129}, {105, 139}, {88, 187}, {53, 209}, {76, 168}, {66, 166}, {59, 223}, {54, 210}, {95, 187}, {98, 134}, {108, 136}, {56, 221}, {81, 180}, {98, 135}, {34, 196}, {51, 212}, {54, 209}, {7, 239}, {73, 161}, {48, 216}, {78, 166}, {2, 235}, {63, 214}, {62, 215}, {39, 206}, {42, 195}, {91, 178}, {14, 228}, {64, 170}, {61, 215}, {39, 205}, {40, 194}, {97, 139}, {111, 133}, {3, 232}, {70, 173}, {9, 229}, {15, 227}, {37, 201}, {80, 188}, {80, 189}, {85, 184}, {96, 141}, {106, 135}, {6, 232}, {66, 172}, {60, 210}, {93, 179}, {32, 207}, {71, 168}, {65, 174}, {37, 202}, {47, 192}, {106, 154}, {20, 229}, {57, 200}, {55, 198}, {85, 164}, {90, 171}, {111, 158}, {29, 239}, {22, 229}, {64, 179}, {52, 199}, {92, 175}, {104, 155}, {111, 156}, {112, 131}, {59, 207}, {94, 170}, {38, 211}, {63, 202}, {41, 220}, {44, 217}, {81, 164}, {82, 167}, {84, 161}, {21, 227}, {56, 206}, {28, 234}, {25, 238}, {48, 199}, {27, 227}, {74, 178}, {81, 169}, {84, 172}, {95, 167}, {61, 196}, {16, 234}, {76, 182}, {64, 186}, {53, 207}, {87, 173}, {11, 240}, {63, 196}, {37, 222}, {50, 201}, {86, 173}, {87, 171}, {116, 136}, {104, 148}, {103, 154}, {26, 228}, {71, 185}, {56, 198}, {108, 146}, {27, 228}, {34, 221}, {87, 168}, {99, 156} }>;

(II) A more general form is to represent the graph as the orbit of {113, 121} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 23)(18, 28)(20, 31)(22, 34)(25, 38)(26, 40)(27, 42)(29, 45)(30, 47)(33, 51)(35, 53)(37, 56)(39, 58)(41, 61)(43, 64)(44, 66)(48, 71)(49, 73)(50, 59)(52, 76)(54, 77)(55, 68)(57, 82)(60, 86)(62, 67)(63, 88)(65, 89)(69, 94)(70, 91)(72, 83)(74, 87)(75, 90)(78, 81)(79, 99)(80, 101)(85, 100)(92, 103)(93, 95)(96, 112)(97, 98)(102, 113)(105, 110)(106, 115)(107, 111)(108, 114)(109, 116)(118, 119)(121, 226)(122, 209)(123, 235)(124, 229)(125, 134)(126, 179)(127, 147)(128, 183)(129, 206)(130, 145)(131, 240)(132, 227)(133, 167)(135, 233)(136, 200)(137, 142)(138, 219)(139, 215)(140, 228)(141, 197)(143, 174)(144, 163)(146, 211)(148, 192)(149, 207)(150, 151)(152, 238)(153, 196)(154, 216)(155, 169)(156, 232)(157, 223)(158, 237)(159, 203)(160, 194)(161, 172)(162, 177)(164, 220)(165, 184)(166, 217)(168, 199)(170, 230)(171, 231)(173, 178)(175, 195)(176, 182)(180, 201)(181, 218)(185, 239)(186, 188)(187, 214)(189, 208)(190, 205)(191, 234)(193, 204)(198, 222)(202, 221)(210, 236)(212, 224)(213, 225)
b: (2, 92, 3, 103)(4, 62, 6, 67)(5, 78, 8, 81)(7, 61, 11, 41)(9, 35, 14, 53)(10, 66, 16, 44)(12, 85, 19, 100)(13, 37, 21, 56)(15, 34, 24, 22)(17, 96, 23, 112)(18, 40, 28, 26)(20, 50, 31, 59)(25, 97, 38, 98)(27, 83, 42, 72)(29, 69, 45, 94)(30, 99, 47, 79)(33, 90, 51, 75)(36, 120)(39, 49, 58, 73)(43, 82, 64, 57)(48, 63, 71, 88)(52, 89, 76, 65)(54, 70, 77, 91)(55, 118, 68, 119)(60, 87, 86, 74)(80, 116, 101, 109)(84, 117)(93, 106, 95, 115)(102, 111, 113, 107)(105, 114, 110, 108)(121, 237, 226, 158)(122, 228, 209, 140)(123, 195, 235, 175)(124, 207, 229, 149)(125, 142, 134, 137)(126, 233, 179, 135)(127, 206, 147, 129)(128, 164, 183, 220)(130, 141, 145, 197)(131, 159, 240, 203)(132, 202, 227, 221)(133, 230, 167, 170)(136, 186, 200, 188)(138, 180, 219, 201)(139, 211, 215, 146)(143, 182, 174, 176)(144, 162, 163, 177)(148, 169, 192, 155)(150, 199, 151, 168)(152, 165, 238, 184)(153, 239, 196, 185)(154, 187, 216, 214)(156, 225, 232, 213)(157, 190, 223, 205)(160, 222, 194, 198)(161, 191, 172, 234)(166, 181, 217, 218)(171, 212, 231, 224)(173, 236, 178, 210)(189, 193, 208, 204)
c: (1, 2, 4, 7, 12, 20, 32, 50, 75, 56, 81, 103)(3, 5, 9, 15, 25, 39, 59, 85, 106, 88, 99, 114)(6, 10, 17, 27, 43, 65, 90, 109, 118, 94, 40, 60)(8, 13, 22, 35, 54, 79, 100, 61, 71, 95, 111, 38)(11, 18, 29, 46, 69, 24, 37, 57, 83, 104, 42, 63)(14, 23, 36, 55, 80, 102, 115, 119, 120, 112, 66, 91)(16, 26, 41, 62, 87, 107, 116, 64, 21, 33, 52, 77)(19, 30, 48, 72, 96, 53, 78, 98, 34, 45, 68, 93)(28, 44, 67, 92, 110, 76, 82, 101, 51, 31, 49, 74)(47, 70, 89, 108, 117, 73, 97, 113, 86, 58, 84, 105)(121, 236, 234, 161, 139, 225, 173, 237, 136, 186, 127, 125)(122, 141, 144, 220, 215, 168, 167, 208, 179, 138, 147, 199)(123, 192, 140, 151, 146, 191, 223, 184, 230, 150, 129, 200)(124, 157, 231, 198, 217, 213, 216, 235, 182, 131, 166, 134)(126, 158, 142, 181, 160, 153, 163, 210, 232, 218, 159, 227)(128, 219, 229, 149, 137, 206, 180, 164, 154, 187, 156, 211)(130, 228, 203, 174, 171, 189, 193, 170, 194, 224, 176, 197)(132, 202, 240, 209, 155, 165, 196, 185, 222, 133, 152, 148)(135, 221, 169, 195, 214, 183, 162, 239, 238, 205, 207, 201)(143, 175, 188, 226, 233, 204, 212, 190, 172, 178, 177, 145)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 176 ]
240
-1 154 187 214 216
-2 187 156 235 183
-3 232 123 214 128
-4 156 211 182 162
-5 192 183 218 219
-6 176 177 232 146
-7 211 128 239 131
-8 148 181 138 128
-9 159 140 162 229
-10 145 191 218 197
-11 146 183 185 240
-12 166 128 238 219
-13 132 147 160 219
-14 177 124 203 228
-15 149 227 151 239
-16 234 181 130 141
-17 143 223 159 130
-18 209 222 191 162
-19 138 183 217 152
-20 134 205 229 219
-21 127 138 194 227
-22 199 202 229 153
-23 145 157 203 174
-24 132 150 185 207
-25 146 126 137 238
-26 144 160 161 228
-27 227 184 228 175
-28 198 122 177 234
-29 133 155 223 239
-30 147 213 148 162
-31 124 190 125 138
-32 124 149 207 229
-33 125 147 224 126
-34 221 124 168 196
-35 122 149 163 240
-36 143 231 171 174
-37 222 201 202 129
-38 211 179 152 142
-39 158 191 205 206
-40 172 194 140 163
-41 220 203 139 153
-42 132 165 140 195
-43 188 126 203 230
-44 145 161 217 141
-45 167 157 169 185
-46 165 238 184 152
-47 177 192 225 127
-48 132 199 216 239
-49 121 157 147 172
-50 157 201 137 149
-51 134 179 212 127
-52 121 176 199 158
-53 209 144 207 131
-54 209 210 137 141
-55 198 189 171 175
-56 198 221 180 206
-57 133 200 135 240
-58 190 234 237 129
-59 223 180 207 142
-60 210 178 224 151
-61 159 215 196 164
-62 225 215 163 174
-63 202 214 151 196
-64 179 159 170 186
-65 158 226 150 174
-66 166 172 130 197
-67 143 144 213 139
-68 231 222 195 208
-69 148 205 196 230
-70 145 125 140 173
-71 154 168 227 185
-72 122 202 235 238
-73 223 127 226 161
-74 231 199 178 236
-75 231 135 137 206
-76 168 182 226 237
-77 122 236 142 197
-78 220 155 166 201
-79 144 155 232 206
-80 188 189 193 217
-81 169 180 217 164
-82 167 233 136 131
-83 209 221 123 152
-84 200 136 161 172
-85 201 181 184 164
-86 212 236 150 173
-87 210 168 171 173
-88 187 221 150 153
-89 121 143 237 151
-90 233 171 129 142
-91 134 178 228 130
-92 220 225 216 175
-93 198 133 179 214
-94 190 170 192 153
-95 187 167 222 126
-96 182 205 141 240
-97 233 125 139 184
-98 165 134 135 215
-99 156 169 129 163
-100 165 220 180 218
-101 166 204 186 208
-102 213 170 193 226
-103 154 213 195 164
-104 155 169 148 192
-105 123 178 139 186
-106 154 135 160 230
-107 232 167 189 237
-108 146 136 236 175
-109 189 200 181 204
-110 188 235 215 173
-111 133 156 158 208
-112 176 190 131 197
-113 121 225 204 230
-114 210 200 211 195
-115 233 170 194 216
-116 136 193 218 208
-117 188 234 191 186
-118 123 212 160 193
-119 224 235 204 194
-120 176 212 224 182
-121 89 113 49 52
-122 77 35 28 72
-123 3 83 105 118
-124 34 14 31 32
-125 33 70 31 97
-126 33 25 95 43
-127 47 51 73 21
-128 12 3 7 8
-129 99 90 58 37
-130 66 91 16 17
-131 112 82 7 53
-132 13 24 48 42
-133 111 57 93 29
-134 91 51 20 98
-135 57 106 75 98
-136 82 116 84 108
-137 25 50 75 54
-138 8 19 31 21
-139 67 105 41 97
-140 70 40 9 42
-141 44 16 96 54
-142 77 90 59 38
-143 67 89 36 17
-144 67 79 26 53
-145 44 23 70 10
-146 11 25 6 108
-147 33 13 49 30
-148 69 104 8 30
-149 35 15 50 32
-150 88 24 86 65
-151 89 15 60 63
-152 46 38 83 19
-153 22 88 94 41
-154 1 103 71 106
-155 78 79 104 29
-156 99 111 2 4
-157 23 45 49 50
-158 111 39 52 65
-159 17 61 9 64
-160 13 26 106 118
-161 44 26 73 84
-162 4 18 30 9
-163 99 35 40 62
-164 81 103 61 85
-165 100 46 42 98
-166 66 12 78 101
-167 45 82 95 107
-168 34 71 76 87
-169 99 45 81 104
-170 102 115 94 64
-171 55 90 36 87
-172 66 49 40 84
-173 110 70 86 87
-174 23 36 62 65
-175 55 92 27 108
-176 112 6 52 120
-177 14 47 6 28
-178 91 60 105 74
-179 38 93 51 64
-180 56 100 59 81
-181 16 8 85 109
-182 4 96 76 120
-183 11 2 5 19
-184 46 27 85 97
-185 11 45 24 71
-186 101 105 117 64
-187 88 1 2 95
-188 110 80 117 43
-189 55 80 107 109
-190 112 58 94 31
-191 39 18 117 10
-192 47 5 104 94
-193 80 102 116 118
-194 115 40 119 21
-195 68 103 114 42
-196 34 69 61 63
-197 66 77 112 10
-198 55 56 93 28
-199 22 48 52 74
-200 57 114 84 109
-201 78 37 50 85
-202 22 37 72 63
-203 23 14 41 43
-204 101 113 119 109
-205 69 39 96 20
-206 56 79 39 75
-207 24 59 53 32
-208 111 68 101 116
-209 83 18 53 54
-210 114 60 54 87
-211 4 114 38 7
-212 51 118 86 120
-213 67 102 103 30
-214 1 3 93 63
-215 110 61 62 98
-216 1 48 92 115
-217 44 80 81 19
-218 100 5 116 10
-219 12 13 5 20
-220 78 100 92 41
-221 88 34 56 83
-222 68 37 18 95
-223 59 17 29 73
-224 33 60 119 120
-225 47 113 92 62
-226 102 73 65 76
-227 15 27 71 21
-228 14 91 26 27
-229 22 9 20 32
-230 69 113 106 43
-231 68 36 74 75
-232 79 3 6 107
-233 90 82 115 97
-234 58 16 28 117
-235 110 2 72 119
-236 77 74 86 108
-237 89 58 107 76
-238 12 46 25 72
-239 15 48 7 29
-240 11 35 57 96
0

**************