[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 178 ] =
BGCG(UG(ATD[120,55]);K1;{5,7}).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {116, 124}, {108, 124}, {111, 125}, {104, 127}, {102, 126}, {97,
123}, {95, 122}, {80, 127}, {82, 125}, {86, 121}, {77, 126}, {69, 126}, {66,
127}, {58, 121}, {60, 123}, {54, 122}, {41, 123}, {44, 121}, {47, 122}, {35,
123}, {36, 122}, {27, 125}, {20, 127}, {18, 126}, {21, 121}, {15, 124}, {8,
125}, {3, 124}, {36, 164}, {74, 202}, {40, 168}, {105, 233}, {86, 215}, {107,
234}, {3, 129}, {69, 199}, {57, 187}, {45, 175}, {52, 182}, {87, 213}, {111,
237}, {5, 134}, {54, 181}, {16, 147}, {42, 174}, {20, 145}, {83, 214}, {85,
208}, {98, 231}, {6, 128}, {68, 194}, {29, 155}, {17, 153}, {59, 179}, {36,
172}, {41, 161}, {43, 163}, {89, 209}, {110, 230}, {6, 143}, {101, 236}, {12,
134}, {64, 202}, {42, 160}, {48, 186}, {82, 216}, {23, 156}, {76, 199}, {9,
133}, {62, 178}, {78, 194}, {7, 138}, {108, 225}, {85, 219}, {98, 236}, {107,
229}, {51, 188}, {62, 177}, {53, 186}, {81, 222}, {82, 221}, {9, 153}, {84,
196}, {88, 200}, {115, 226}, {46, 188}, {71, 213}, {63, 173}, {60, 174}, {55,
165}, {76, 222}, {78, 220}, {79, 221}, {91, 201}, {28, 136}, {29, 137}, {84,
192}, {87, 195}, {58, 175}, {117, 224}, {88, 205}, {2, 148}, {65, 215}, {8,
158}, {24, 142}, {45, 187}, {10, 157}, {50, 165}, {2, 154}, {115, 235}, {57,
161}, {104, 240}, {5, 156}, {68, 221}, {14, 151}, {27, 130}, {47, 182}, {33,
187}, {41, 179}, {8, 147}, {59, 160}, {46, 181}, {28, 128}, {118, 234}, {90,
198}, {25, 132}, {74, 215}, {67, 222}, {39, 185}, {74, 212}, {66, 220}, {87,
201}, {37, 186}, {119, 232}, {60, 163}, {83, 204}, {90, 197}, {28, 188}, {39,
135}, {97, 193}, {101, 197}, {37, 132}, {120, 217}, {62, 159}, {43, 138}, {44,
141}, {52, 149}, {78, 239}, {105, 200}, {4, 166}, {13, 175}, {20, 183}, {32,
131}, {40, 139}, {44, 143}, {47, 140}, {77, 238}, {12, 168}, {103, 195}, {9,
172}, {118, 211}, {19, 182}, {22, 179}, {76, 233}, {27, 189}, {119, 209}, {103,
193}, {18, 181}, {31, 184}, {101, 194}, {107, 204}, {2, 170}, {119, 223}, {116,
220}, {15, 167}, {16, 184}, {38, 142}, {33, 136}, {72, 225}, {63, 150}, {89,
240}, {109, 196}, {11, 161}, {73, 227}, {71, 237}, {68, 238}, {56, 146}, {35,
137}, {50, 152}, {101, 207}, {113, 219}, {13, 166}, {73, 226}, {31, 180}, {48,
155}, {51, 152}, {96, 203}, {18, 190}, {67, 239}, {11, 164}, {70, 233}, {56,
151}, {15, 160}, {42, 133}, {52, 155}, {13, 189}, {58, 138}, {32, 145}, {62,
140}, {114, 192}, {100, 214}, {104, 218}, {12, 191}, {25, 170}, {52, 135}, {93,
238}, {13, 185}, {59, 143}, {57, 141}, {25, 173}, {91, 239}, {96, 212}, {1,
180}, {5, 176}, {30, 171}, {35, 150}, {40, 157}, {94, 235}, {49, 135}, {120,
206}, {25, 174}, {39, 144}, {81, 230}, {9, 177}, {117, 205}, {42, 146}, {93,
229}, {7, 190}, {11, 178}, {27, 162}, {35, 154}, {93, 228}, {96, 217}, {37,
158}, {46, 149}, {100, 223}, {113, 202}, {43, 151}, {57, 133}, {10, 183}, {31,
162}, {34, 159}, {111, 210}, {23, 169}, {38, 152}, {90, 228}, {51, 140}, {12,
204}, {116, 180}, {21, 213}, {37, 229}, {77, 141}, {22, 215}, {112, 177}, {28,
222}, {67, 129}, {65, 131}, {80, 146}, {95, 157}, {106, 168}, {109, 175}, {97,
162}, {111, 172}, {79, 139}, {115, 183}, {30, 219}, {91, 158}, {93, 152}, {30,
216}, {118, 176}, {74, 140}, {7, 192}, {69, 130}, {26, 221}, {32, 231}, {108,
164}, {24, 209}, {38, 239}, {14, 196}, {73, 131}, {26, 208}, {36, 238}, {81,
155}, {86, 156}, {17, 218}, {31, 212}, {107, 160}, {1, 205}, {6, 202}, {26,
214}, {40, 228}, {43, 231}, {78, 130}, {106, 166}, {38, 235}, {70, 139}, {106,
167}, {34, 236}, {67, 141}, {46, 224}, {94, 144}, {112, 190}, {1, 206}, {110,
161}, {3, 211}, {21, 197}, {102, 182}, {103, 183}, {10, 219}, {119, 166}, {69,
148}, {29, 204}, {80, 129}, {95, 142}, {108, 189}, {110, 191}, {3, 209}, {71,
149}, {66, 144}, {63, 237}, {16, 194}, {19, 193}, {49, 227}, {103, 181}, {16,
195}, {83, 128}, {65, 149}, {53, 224}, {53, 227}, {68, 146}, {84, 130}, {98,
180}, {18, 197}, {72, 159}, {92, 139}, {105, 190}, {110, 185}, {4, 220}, {10,
210}, {21, 205}, {86, 142}, {92, 132}, {99, 187}, {17, 200}, {49, 232}, {5,
223}, {20, 207}, {24, 195}, {79, 148}, {82, 137}, {92, 135}, {99, 184}, {59,
231}, {76, 144}, {63, 227}, {61, 225}, {88, 132}, {4, 217}, {75, 150}, {29,
192}, {85, 136}, {24, 198}, {116, 170}, {54, 232}, {26, 196}, {102, 184}, {22,
201}, {61, 226}, {23, 200}, {109, 178}, {33, 193}, {11, 234}, {117, 148}, {66,
163}, {50, 208}, {75, 169}, {97, 131}, {113, 147}, {19, 240}, {4, 224}, {120,
156}, {55, 211}, {94, 186}, {64, 165}, {72, 173}, {22, 240}, {54, 208}, {95,
185}, {44, 203}, {64, 167}, {61, 213}, {84, 188}, {85, 189}, {96, 136}, {15,
230}, {64, 169}, {61, 212}, {34, 203}, {49, 216}, {2, 232}, {7, 237}, {8, 226},
{48, 218}, {1, 234}, {114, 153}, {14, 229}, {45, 198}, {88, 179}, {98, 137},
{109, 134}, {79, 163}, {118, 154}, {114, 158}, {6, 235}, {72, 165}, {70, 171},
{55, 218}, {112, 157}, {39, 201}, {73, 167}, {60, 210}, {41, 199}, {14, 225},
{55, 216}, {89, 169}, {92, 172}, {112, 128}, {100, 150}, {23, 228}, {117, 134},
{56, 203}, {81, 162}, {34, 214}, {75, 191}, {113, 133}, {71, 178}, {100, 145},
{70, 176}, {94, 168}, {89, 174}, {90, 173}, {30, 230}, {83, 171}, {105, 145},
{32, 217}, {120, 129}, {115, 138}, {99, 154}, {19, 233}, {75, 177}, {53, 207},
{80, 171}, {104, 147}, {47, 211}, {99, 159}, {17, 236}, {114, 143}, {58, 199},
{50, 207}, {51, 206}, {77, 176}, {87, 170}, {106, 151}, {33, 223}, {65, 191},
{56, 198}, {48, 206}, {45, 210}, {91, 164}, {102, 153} }>;
(II) A more general form is to represent the graph as the orbit of {116, 124}
under the group generated by the following permutations:
a: (1, 11)(2, 14)(3, 15)(4, 13)(5, 12)(6, 19)(7, 18)(8, 16)(9, 17)(10, 20)(21,
71)(22, 74)(23, 75)(24, 73)(25, 72)(26, 79)(27, 78)(28, 76)(29, 77)(30, 80)(31,
91)(32, 95)(33, 94)(34, 92)(35, 93)(36, 98)(37, 99)(38, 97)(39, 96)(40, 100)(41,
51)(42, 55)(43, 54)(44, 52)(45, 53)(46, 58)(47, 59)(48, 57)(49, 56)(50, 60)(61,
87)(62, 88)(63, 90)(64, 89)(65, 86)(66, 85)(67, 81)(68, 82)(69, 84)(70, 83)(101,
111)(102, 114)(103, 115)(104, 113)(105, 112)(106, 119)(107, 118)(108, 116)(109,
117)(110, 120)(121, 149)(122, 231)(123, 152)(125, 194)(126, 192)(127, 219)(128,
233)(129, 230)(131, 142)(132, 159)(133, 218)(135, 203)(136, 144)(137, 238)(138,
181)(139, 214)(140, 179)(141, 155)(143, 182)(145, 157)(146, 216)(148, 196)(150,
228)(151, 232)(154, 229)(156, 191)(158, 184)(160, 211)(161, 206)(162, 239)(163,
208)(164, 180)(165, 174)(167, 209)(168, 223)(170, 225)(172, 236)(175, 224)(176,
204)(177, 200)(178, 205)(185, 217)(186, 187)(188, 199)(189, 220)(193, 235)(195,
226)(197, 237)(198, 227)(201, 212)(202, 240)(207, 210) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5, 3, 4)(6, 8, 7, 9)(11, 51, 31, 21)(12, 55, 32, 25)(13, 54, 33, 24)(14,
52, 34, 22)(15, 53, 35, 23)(16, 58, 36, 28)(17, 59, 37, 29)(18, 57, 38, 27)(19,
56, 39, 26)(20, 60, 40, 30)(41, 93, 81, 101)(42, 94, 82, 105)(43, 92, 83,
104)(44, 91, 84, 102)(45, 95, 85, 103)(46, 99, 86, 108)(47, 96, 87, 109)(48, 98,
88, 107)(49, 100, 89, 106)(50, 97, 90, 110)(61, 71, 62, 74)(63, 75, 64, 73)(65,
72)(66, 79, 70, 80)(67, 78, 69, 77)(68, 76)(111, 112, 113, 115)(116, 117, 118,
120)(121, 164, 188, 184)(122, 136, 195, 175)(123, 228, 230, 207)(124, 224, 154,
156)(125, 190, 133, 235)(126, 141, 239, 130)(127, 163, 139, 171)(128, 147, 138,
172)(129, 220, 148, 176)(131, 173, 191, 165)(132, 204, 218, 231)(134, 211, 217,
170)(135, 214, 240, 151)(137, 200, 160, 186)(140, 212, 213, 178)(142, 189, 181,
187)(143, 158, 192, 153)(144, 221, 233, 146)(145, 174, 168, 216)(149, 159, 215,
225)(150, 169, 167, 227)(152, 162, 197, 161)(155, 236, 179, 229)(157, 219, 183,
210)(166, 232, 223, 209)(177, 202, 226, 237)(180, 205, 234, 206)(182, 203, 201,
196)(185, 208, 193, 198)(194, 199, 238, 222)
c: (1, 6, 5, 9)(2, 8, 4, 10)(3, 7)(11, 59, 86, 75)(12, 57, 88, 74)(13, 60, 87,
73)(14, 56, 90, 72)(15, 58, 89, 71)(16, 53, 85, 79)(17, 51, 83, 77)(18, 55, 84,
80)(19, 52, 81, 76)(20, 54, 82, 78)(21, 64, 109, 42)(22, 65, 110, 41)(23, 62,
107, 44)(24, 63, 108, 43)(25, 61, 106, 45)(26, 68, 101, 50)(27, 66, 103, 49)(28,
70, 102, 48)(29, 67, 105, 47)(30, 69, 104, 46)(31, 94, 33, 92)(32, 95, 35,
91)(34, 93)(36, 98, 38, 100)(37, 96, 40, 99)(39, 97)(111, 116, 115, 119)(112,
118, 114, 120)(113, 117)(121, 169, 178, 160)(122, 137, 239, 145)(123, 201, 131,
185)(124, 138, 209, 237)(125, 220, 183, 232)(126, 218, 188, 171)(127, 181, 216,
130)(128, 176, 153, 206)(129, 190, 211, 192)(132, 212, 168, 187)(133, 205, 202,
134)(135, 162, 144, 193)(136, 139, 184, 186)(140, 204, 141, 200)(142, 150, 164,
231)(143, 156, 177, 234)(146, 197, 165, 196)(147, 224, 219, 148)(149, 230, 199,
240)(151, 198, 173, 225)(152, 214, 238, 236)(154, 158, 217, 157)(155, 222, 233,
182)(159, 229, 203, 228)(161, 179, 215, 191)(163, 195, 227, 189)(166, 210, 170,
226)(167, 175, 174, 213)(172, 180, 235, 223)(194, 207, 208, 221)
d: (1, 2, 5, 4)(6, 8, 9, 10)(11, 54, 86, 78)(12, 53, 88, 79)(13, 51, 87, 77)(14,
52, 90, 76)(15, 55, 89, 80)(16, 57, 85, 74)(17, 60, 83, 73)(18, 58, 84, 71)(19,
56, 81, 72)(20, 59, 82, 75)(21, 69, 109, 46)(22, 68, 110, 50)(23, 66, 107,
49)(24, 67, 108, 47)(25, 70, 106, 48)(26, 65, 101, 41)(27, 62, 103, 44)(28, 61,
102, 45)(29, 63, 105, 43)(30, 64, 104, 42)(31, 99, 33, 96)(32, 98, 35, 100)(34,
97)(36, 95, 38, 91)(37, 92, 40, 94)(39, 93)(111, 112, 115, 114)(116, 118, 119,
120)(121, 130, 178, 181)(122, 142, 239, 164)(123, 214, 131, 236)(124, 211, 209,
129)(125, 177, 183, 143)(126, 175, 188, 213)(127, 160, 216, 169)(128, 226, 153,
210)(132, 139, 168, 186)(133, 219, 202, 147)(134, 224, 205, 148)(135, 228, 144,
229)(136, 212, 184, 187)(137, 150, 145, 231)(138, 192, 237, 190)(140, 195, 141,
189)(146, 230, 165, 240)(149, 197, 199, 196)(151, 155, 173, 233)(152, 201, 238,
185)(154, 223, 217, 180)(156, 220, 234, 232)(157, 235, 158, 172)(159, 193, 203,
162)(161, 208, 215, 194)(163, 204, 227, 200)(166, 206, 170, 176)(167, 218, 174,
171)(179, 221, 191, 207)(182, 198, 222, 225)
C4[ 240, 178 ]
240
-1 234 180 205 206
-2 154 232 148 170
-3 209 211 124 129
-4 220 166 224 217
-5 176 134 156 223
-6 143 202 235 128
-7 190 192 138 237
-8 125 147 158 226
-9 133 177 172 153
-10 210 157 183 219
-11 178 234 161 164
-12 134 168 191 204
-13 166 189 185 175
-14 225 151 196 229
-15 167 124 160 230
-16 147 194 184 195
-17 200 236 218 153
-18 190 126 181 197
-19 233 182 193 240
-20 145 127 183 207
-21 121 213 205 197
-22 179 201 215 240
-23 156 200 169 228
-24 198 209 195 142
-25 132 170 173 174
-26 221 214 196 208
-27 189 125 162 130
-28 188 222 136 128
-29 155 137 192 204
-30 171 216 219 230
-31 212 180 162 184
-32 231 145 217 131
-33 187 223 136 193
-34 159 214 236 203
-35 154 123 137 150
-36 122 172 238 164
-37 132 158 229 186
-38 235 239 152 142
-39 144 135 201 185
-40 157 168 139 228
-41 199 123 179 161
-42 133 146 160 174
-43 231 138 151 163
-44 121 143 203 141
-45 187 198 210 175
-46 188 224 181 149
-47 122 211 182 140
-48 155 206 218 186
-49 232 135 216 227
-50 165 152 207 208
-51 188 140 206 152
-52 155 135 149 182
-53 224 227 207 186
-54 122 232 181 208
-55 165 211 216 218
-56 198 146 203 151
-57 187 133 161 141
-58 121 199 138 175
-59 143 231 179 160
-60 210 123 163 174
-61 212 213 225 226
-62 177 178 159 140
-63 237 150 227 173
-64 165 167 169 202
-65 191 149 215 131
-66 220 144 127 163
-67 222 129 239 141
-68 221 146 194 238
-69 199 126 148 130
-70 176 233 171 139
-71 178 213 149 237
-72 165 159 225 173
-73 167 226 227 131
-74 212 202 215 140
-75 177 169 191 150
-76 144 199 222 233
-77 176 126 238 141
-78 220 194 239 130
-79 221 148 139 163
-80 146 127 171 129
-81 155 222 162 230
-82 221 125 137 216
-83 214 171 204 128
-84 188 192 130 196
-85 189 136 208 219
-86 121 156 215 142
-87 201 213 170 195
-88 132 200 179 205
-89 209 169 174 240
-90 198 173 228 197
-91 201 158 239 164
-92 132 135 139 172
-93 238 228 152 229
-94 144 168 235 186
-95 122 157 185 142
-96 212 136 203 217
-97 123 193 162 131
-98 231 180 137 236
-99 154 187 159 184
-100 145 223 214 150
-101 236 194 207 197
-102 126 182 184 153
-103 181 193 183 195
-104 147 127 218 240
-105 145 200 233 190
-106 166 167 168 151
-107 234 160 204 229
-108 189 124 225 164
-109 134 178 196 175
-110 191 161 185 230
-111 210 125 237 172
-112 177 157 190 128
-113 133 147 202 219
-114 143 158 192 153
-115 235 138 226 183
-116 220 124 180 170
-117 134 224 148 205
-118 154 176 211 234
-119 209 166 232 223
-120 156 129 206 217
-121 44 58 86 21
-122 36 47 95 54
-123 35 60 41 97
-124 3 15 116 108
-125 111 27 82 8
-126 77 69 102 18
-127 66 80 104 20
-128 112 6 28 83
-129 67 3 80 120
-130 78 69 27 84
-131 73 97 32 65
-132 88 25 37 92
-133 57 113 9 42
-134 12 5 117 109
-135 92 49 39 52
-136 33 28 85 96
-137 35 82 29 98
-138 58 115 7 43
-139 79 70 92 40
-140 47 51 62 74
-141 44 77 67 57
-142 24 38 95 86
-143 44 59 114 6
-144 66 39 94 76
-145 100 105 20 32
-146 56 68 80 42
-147 113 16 104 8
-148 2 79 69 117
-149 46 71 52 65
-150 100 35 63 75
-151 56 14 106 43
-152 38 93 50 51
-153 102 114 17 9
-154 99 2 35 118
-155 48 81 29 52
-156 23 5 86 120
-157 112 40 95 10
-158 91 37 114 8
-159 99 34 72 62
-160 15 59 107 42
-161 11 110 57 41
-162 81 27 31 97
-163 66 79 60 43
-164 11 36 91 108
-165 55 50 72 64
-166 13 4 106 119
-167 15 73 106 64
-168 12 94 40 106
-169 23 89 64 75
-170 2 25 116 87
-171 80 70 83 30
-172 111 36 92 9
-173 90 25 72 63
-174 89 25 60 42
-175 45 13 58 109
-176 77 70 5 118
-177 112 62 9 75
-178 11 71 62 109
-179 22 88 59 41
-180 1 116 31 98
-181 46 103 18 54
-182 47 102 19 52
-183 103 115 20 10
-184 99 102 16 31
-185 110 13 39 95
-186 37 48 94 53
-187 33 99 45 57
-188 46 28 51 84
-189 13 27 85 108
-190 112 105 7 18
-191 110 12 75 65
-192 114 7 29 84
-193 33 103 19 97
-194 78 68 101 16
-195 24 103 16 87
-196 14 26 84 109
-197 90 101 18 21
-198 45 56 24 90
-199 58 69 41 76
-200 88 23 17 105
-201 22 91 39 87
-202 113 6 74 64
-203 44 34 56 96
-204 12 83 29 107
-205 88 1 117 21
-206 1 48 51 120
-207 101 50 20 53
-208 26 50 85 54
-209 89 24 3 119
-210 45 111 60 10
-211 55 3 47 118
-212 61 74 96 31
-213 71 61 21 87
-214 34 100 26 83
-215 22 74 86 65
-216 55 49 82 30
-217 4 96 32 120
-218 55 48 104 17
-219 113 30 85 10
-220 66 78 4 116
-221 68 79 26 82
-222 67 81 28 76
-223 33 100 5 119
-224 46 4 117 53
-225 14 61 72 108
-226 115 61 73 8
-227 49 73 63 53
-228 23 90 93 40
-229 14 37 93 107
-230 110 15 81 30
-231 59 32 43 98
-232 2 49 119 54
-233 70 105 19 76
-234 11 1 107 118
-235 38 115 6 94
-236 34 101 17 98
-237 111 71 7 63
-238 77 68 36 93
-239 67 78 91 38
-240 22 89 104 19
0