[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 241, 1 ] =
C_241(1,64).
(I) Following is a form readable by MAGMA:
g:=Graph<241|{ {2, 3}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232,
233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221},
{218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206,
207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195},
{192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180,
181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169},
{166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154,
155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143},
{140, 141}, {138, 139}, {136, 137}, {134, 135}, {66, 67}, {64, 65}, {62, 63},
{60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47},
{44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16,
17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32,
33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {68, 69}, {70, 71}, {72, 73}, {74,
75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90,
91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {1, 2}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222},
{217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193,
194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170},
{165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141,
142}, {137, 138}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46},
{41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90},
{93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118},
{121, 122}, {125, 126}, {129, 130}, {133, 134}, {3, 4}, {235, 236}, {227, 228},
{219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171,
172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51,
52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91,
92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {231,
232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136},
{55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15,
16}, {239, 240}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111,
112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {1, 65}, {177, 241}, {176,
240}, {175, 239}, {174, 238}, {173, 237}, {172, 236}, {171, 235}, {170, 234},
{169, 233}, {168, 232}, {167, 231}, {166, 230}, {165, 229}, {164, 228}, {163,
227}, {162, 226}, {161, 225}, {160, 224}, {159, 223}, {158, 222}, {157, 221},
{156, 220}, {155, 219}, {154, 218}, {153, 217}, {152, 216}, {151, 215}, {150,
214}, {149, 213}, {148, 212}, {147, 211}, {146, 210}, {145, 209}, {144, 208},
{143, 207}, {142, 206}, {141, 205}, {140, 204}, {139, 203}, {138, 202}, {137,
201}, {136, 200}, {135, 199}, {134, 198}, {63, 127}, {62, 126}, {61, 125}, {60,
124}, {59, 123}, {58, 122}, {57, 121}, {56, 120}, {55, 119}, {54, 118}, {53,
117}, {52, 116}, {51, 115}, {50, 114}, {49, 113}, {48, 112}, {47, 111}, {46,
110}, {45, 109}, {44, 108}, {43, 107}, {42, 106}, {41, 105}, {40, 104}, {2, 66},
{3, 67}, {4, 68}, {5, 69}, {6, 70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11,
75}, {12, 76}, {13, 77}, {14, 78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {19,
83}, {20, 84}, {21, 85}, {22, 86}, {23, 87}, {24, 88}, {25, 89}, {26, 90}, {27,
91}, {28, 92}, {29, 93}, {30, 94}, {31, 95}, {32, 96}, {33, 97}, {34, 98}, {35,
99}, {36, 100}, {37, 101}, {38, 102}, {39, 103}, {128, 192}, {129, 193}, {130,
194}, {131, 195}, {132, 196}, {133, 197}, {63, 64}, {191, 192}, {2, 179}, {64,
241}, {4, 181}, {6, 183}, {8, 185}, {10, 187}, {12, 189}, {14, 191}, {1, 178},
{5, 182}, {9, 186}, {13, 190}, {3, 180}, {11, 188}, {7, 184}, {64, 128}, {66,
130}, {65, 129}, {67, 131}, {68, 132}, {69, 133}, {70, 134}, {71, 135}, {72,
136}, {73, 137}, {74, 138}, {75, 139}, {76, 140}, {77, 141}, {78, 142}, {79,
143}, {80, 144}, {81, 145}, {82, 146}, {83, 147}, {84, 148}, {85, 149}, {86,
150}, {87, 151}, {88, 152}, {89, 153}, {90, 154}, {91, 155}, {92, 156}, {93,
157}, {94, 158}, {95, 159}, {96, 160}, {97, 161}, {98, 162}, {99, 163}, {100,
164}, {101, 165}, {102, 166}, {103, 167}, {104, 168}, {105, 169}, {106, 170},
{107, 171}, {108, 172}, {109, 173}, {110, 174}, {111, 175}, {112, 176}, {113,
177}, {114, 178}, {115, 179}, {116, 180}, {117, 181}, {118, 182}, {119, 183},
{120, 184}, {121, 185}, {122, 186}, {123, 187}, {124, 188}, {125, 189}, {126,
190}, {127, 191}, {15, 192}, {63, 240}, {47, 224}, {31, 208}, {16, 193}, {62,
239}, {60, 237}, {58, 235}, {56, 233}, {54, 231}, {52, 229}, {50, 227}, {48,
225}, {18, 195}, {20, 197}, {22, 199}, {24, 201}, {26, 203}, {28, 205}, {30,
207}, {17, 194}, {61, 238}, {57, 234}, {53, 230}, {49, 226}, {21, 198}, {25,
202}, {29, 206}, {19, 196}, {59, 236}, {51, 228}, {27, 204}, {23, 200}, {55,
232}, {1, 241}, {32, 209}, {46, 223}, {44, 221}, {42, 219}, {40, 217}, {34,
211}, {36, 213}, {38, 215}, {33, 210}, {45, 222}, {41, 218}, {37, 214}, {35,
212}, {43, 220}, {39, 216}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 65, 241, 178)(3, 129, 240, 114)(4, 193, 239, 50)(5, 16, 238, 227)(6, 80,
237, 163)(7, 144, 236, 99)(8, 208, 235, 35)(9, 31, 234, 212)(10, 95, 233,
148)(11, 159, 232, 84)(12, 223, 231, 20)(13, 46, 230, 197)(14, 110, 229,
133)(15, 174, 228, 69)(17, 61, 226, 182)(18, 125, 225, 118)(19, 189, 224,
54)(21, 76, 222, 167)(22, 140, 221, 103)(23, 204, 220, 39)(24, 27, 219, 216)(25,
91, 218, 152)(26, 155, 217, 88)(28, 42, 215, 201)(29, 106, 214, 137)(30, 170,
213, 73)(32, 57, 211, 186)(33, 121, 210, 122)(34, 185, 209, 58)(36, 72, 207,
171)(37, 136, 206, 107)(38, 200, 205, 43)(40, 87, 203, 156)(41, 151, 202,
92)(44, 102, 199, 141)(45, 166, 198, 77)(47, 53, 196, 190)(48, 117, 195,
126)(49, 181, 194, 62)(51, 68, 192, 175)(52, 132, 191, 111)(55, 83, 188,
160)(56, 147, 187, 96)(59, 98, 184, 145)(60, 162, 183, 81)(63, 113, 180,
130)(64, 177, 179, 66)(67, 128, 176, 115)(70, 79, 173, 164)(71, 143, 172,
100)(74, 94, 169, 149)(75, 158, 168, 85)(78, 109, 165, 134)(82, 124, 161,
119)(86, 139, 157, 104)(89, 90, 154, 153)(93, 105, 150, 138)(97, 120, 146,
123)(101, 135, 142, 108)(112, 116, 131, 127)
C4[ 241, 1 ]
241
-1 2 178 65 241
-2 66 1 3 179
-3 67 2 4 180
-4 68 3 5 181
-5 69 4 6 182
-6 70 5 7 183
-7 71 6 8 184
-8 72 7 9 185
-9 73 8 10 186
-10 11 187 74 9
-11 12 188 75 10
-12 11 13 189 76
-13 77 12 14 190
-14 78 13 15 191
-15 79 14 16 192
-16 80 15 17 193
-17 81 16 18 194
-18 82 17 19 195
-19 83 18 20 196
-20 84 19 21 197
-21 22 198 85 20
-22 23 199 86 21
-23 22 24 200 87
-24 88 23 25 201
-25 89 24 26 202
-26 90 25 27 203
-27 91 26 28 204
-28 92 27 29 205
-29 93 28 30 206
-30 94 29 31 207
-31 95 30 32 208
-32 33 209 96 31
-33 34 210 97 32
-34 33 35 211 98
-35 99 34 36 212
-36 100 35 37 213
-37 101 36 38 214
-38 102 37 39 215
-39 103 38 40 216
-40 104 39 41 217
-41 105 40 42 218
-42 106 41 43 219
-43 44 220 107 42
-44 45 221 108 43
-45 44 46 222 109
-46 110 45 47 223
-47 111 46 48 224
-48 112 47 49 225
-49 113 48 50 226
-50 114 49 51 227
-51 115 50 52 228
-52 116 51 53 229
-53 117 52 54 230
-54 55 231 118 53
-55 56 232 119 54
-56 55 57 233 120
-57 121 56 58 234
-58 122 57 59 235
-59 123 58 60 236
-60 124 59 61 237
-61 125 60 62 238
-62 126 61 63 239
-63 127 62 64 240
-64 128 63 65 241
-65 66 1 129 64
-66 67 2 130 65
-67 66 68 3 131
-68 132 67 69 4
-69 133 68 70 5
-70 134 69 71 6
-71 135 70 72 7
-72 136 71 73 8
-73 137 72 74 9
-74 138 73 75 10
-75 11 139 74 76
-76 77 12 140 75
-77 78 13 141 76
-78 77 79 14 142
-79 143 78 80 15
-80 144 79 81 16
-81 145 80 82 17
-82 146 81 83 18
-83 147 82 84 19
-84 148 83 85 20
-85 149 84 86 21
-86 22 150 85 87
-87 88 23 151 86
-88 89 24 152 87
-89 88 90 25 153
-90 154 89 91 26
-91 155 90 92 27
-92 156 91 93 28
-93 157 92 94 29
-94 158 93 95 30
-95 159 94 96 31
-96 160 95 97 32
-97 33 161 96 98
-98 99 34 162 97
-99 100 35 163 98
-100 99 101 36 164
-101 165 100 102 37
-102 166 101 103 38
-103 167 102 104 39
-104 168 103 105 40
-105 169 104 106 41
-106 170 105 107 42
-107 171 106 108 43
-108 44 172 107 109
-109 110 45 173 108
-110 111 46 174 109
-111 110 112 47 175
-112 176 111 113 48
-113 177 112 114 49
-114 178 113 115 50
-115 179 114 116 51
-116 180 115 117 52
-117 181 116 118 53
-118 182 117 119 54
-119 55 183 118 120
-120 121 56 184 119
-121 122 57 185 120
-122 121 123 58 186
-123 187 122 124 59
-124 188 123 125 60
-125 189 124 126 61
-126 190 125 127 62
-127 191 126 128 63
-128 192 127 129 64
-129 193 128 130 65
-130 66 194 129 131
-131 132 67 195 130
-132 133 68 196 131
-133 132 134 69 197
-134 198 133 135 70
-135 199 134 136 71
-136 200 135 137 72
-137 201 136 138 73
-138 202 137 139 74
-139 203 138 140 75
-140 204 139 141 76
-141 77 205 140 142
-142 143 78 206 141
-143 144 79 207 142
-144 143 145 80 208
-145 209 144 146 81
-146 210 145 147 82
-147 211 146 148 83
-148 212 147 149 84
-149 213 148 150 85
-150 214 149 151 86
-151 215 150 152 87
-152 88 216 151 153
-153 154 89 217 152
-154 155 90 218 153
-155 154 156 91 219
-156 220 155 157 92
-157 221 156 158 93
-158 222 157 159 94
-159 223 158 160 95
-160 224 159 161 96
-161 225 160 162 97
-162 226 161 163 98
-163 99 227 162 164
-164 165 100 228 163
-165 166 101 229 164
-166 165 167 102 230
-167 231 166 168 103
-168 232 167 169 104
-169 233 168 170 105
-170 234 169 171 106
-171 235 170 172 107
-172 236 171 173 108
-173 237 172 174 109
-174 110 238 173 175
-175 176 111 239 174
-176 177 112 240 175
-177 176 178 113 241
-178 1 177 179 114
-179 2 178 180 115
-180 3 179 181 116
-181 4 180 182 117
-182 5 181 183 118
-183 6 182 184 119
-184 7 183 185 120
-185 121 8 184 186
-186 187 122 9 185
-187 188 123 10 186
-188 11 187 189 124
-189 12 188 190 125
-190 13 189 191 126
-191 14 190 192 127
-192 15 191 193 128
-193 16 192 194 129
-194 17 193 195 130
-195 18 194 196 131
-196 132 19 195 197
-197 198 133 20 196
-198 199 134 21 197
-199 22 198 200 135
-200 23 199 201 136
-201 24 200 202 137
-202 25 201 203 138
-203 26 202 204 139
-204 27 203 205 140
-205 28 204 206 141
-206 29 205 207 142
-207 143 30 206 208
-208 209 144 31 207
-209 210 145 32 208
-210 33 209 211 146
-211 34 210 212 147
-212 35 211 213 148
-213 36 212 214 149
-214 37 213 215 150
-215 38 214 216 151
-216 39 215 217 152
-217 40 216 218 153
-218 154 41 217 219
-219 220 155 42 218
-220 221 156 43 219
-221 44 220 222 157
-222 45 221 223 158
-223 46 222 224 159
-224 47 223 225 160
-225 48 224 226 161
-226 49 225 227 162
-227 50 226 228 163
-228 51 227 229 164
-229 165 52 228 230
-230 231 166 53 229
-231 232 167 54 230
-232 55 231 233 168
-233 56 232 234 169
-234 57 233 235 170
-235 58 234 236 171
-236 59 235 237 172
-237 60 236 238 173
-238 61 237 239 174
-239 62 238 240 175
-240 176 63 239 241
-241 1 177 64 240
0