[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 1 ] =
DW(81,3).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {162, 163}, {81, 82}, {2, 82}, {162, 242}, {161, 241}, {160,
240}, {143, 223}, {142, 222}, {141, 221}, {140, 220}, {139, 219}, {138, 218},
{137, 217}, {136, 216}, {135, 215}, {134, 214}, {133, 213}, {132, 212}, {131,
211}, {130, 210}, {129, 209}, {128, 208}, {47, 127}, {46, 126}, {45, 125}, {44,
124}, {43, 123}, {42, 122}, {41, 121}, {40, 120}, {39, 119}, {38, 118}, {37,
117}, {36, 116}, {35, 115}, {34, 114}, {33, 113}, {32, 112}, {3, 83}, {4, 84},
{5, 85}, {6, 86}, {7, 87}, {8, 88}, {9, 89}, {10, 90}, {11, 91}, {12, 92}, {13,
93}, {14, 94}, {15, 95}, {1, 83}, {161, 243}, {160, 242}, {141, 223}, {140,
222}, {137, 219}, {136, 218}, {133, 215}, {132, 214}, {129, 211}, {128, 210},
{45, 127}, {44, 126}, {41, 123}, {40, 122}, {37, 119}, {36, 118}, {33, 115},
{32, 114}, {4, 86}, {5, 87}, {8, 90}, {9, 91}, {12, 94}, {13, 95}, {2, 84},
{139, 221}, {138, 220}, {131, 213}, {130, 212}, {43, 125}, {42, 124}, {35, 117},
{34, 116}, {3, 85}, {10, 92}, {11, 93}, {6, 88}, {135, 217}, {134, 216}, {39,
121}, {38, 120}, {7, 89}, {14, 96}, {159, 241}, {158, 240}, {143, 225}, {142,
224}, {31, 113}, {30, 112}, {15, 97}, {16, 96}, {159, 239}, {158, 238}, {157,
237}, {156, 236}, {155, 235}, {154, 234}, {153, 233}, {152, 232}, {151, 231},
{150, 230}, {149, 229}, {148, 228}, {147, 227}, {146, 226}, {145, 225}, {144,
224}, {31, 111}, {17, 97}, {18, 98}, {19, 99}, {20, 100}, {21, 101}, {22, 102},
{23, 103}, {24, 104}, {25, 105}, {26, 106}, {27, 107}, {28, 108}, {29, 109},
{30, 110}, {16, 98}, {157, 239}, {156, 238}, {153, 235}, {152, 234}, {149, 231},
{148, 230}, {145, 227}, {144, 226}, {17, 99}, {20, 102}, {21, 103}, {24, 106},
{25, 107}, {28, 110}, {29, 111}, {18, 100}, {155, 237}, {154, 236}, {147, 229},
{146, 228}, {19, 101}, {26, 108}, {27, 109}, {22, 104}, {151, 233}, {150, 232},
{23, 105}, {2, 163}, {30, 191}, {4, 165}, {6, 167}, {8, 169}, {10, 171}, {12,
173}, {14, 175}, {16, 177}, {18, 179}, {20, 181}, {22, 183}, {24, 185}, {26,
187}, {28, 189}, {64, 225}, {66, 227}, {68, 229}, {70, 231}, {72, 233}, {74,
235}, {76, 237}, {78, 239}, {80, 241}, {82, 243}, {1, 162}, {4, 167}, {5, 166},
{8, 171}, {9, 170}, {12, 175}, {13, 174}, {16, 179}, {17, 178}, {20, 183}, {21,
182}, {24, 187}, {25, 186}, {28, 191}, {29, 190}, {64, 227}, {65, 226}, {68,
231}, {69, 230}, {72, 235}, {73, 234}, {76, 239}, {77, 238}, {80, 243}, {81,
242}, {1, 164}, {3, 166}, {9, 172}, {11, 174}, {17, 180}, {19, 182}, {25, 188},
{27, 190}, {65, 228}, {67, 230}, {73, 236}, {75, 238}, {2, 165}, {3, 164}, {10,
173}, {11, 172}, {18, 181}, {19, 180}, {26, 189}, {27, 188}, {66, 229}, {67,
228}, {74, 237}, {75, 236}, {5, 168}, {7, 170}, {21, 184}, {23, 186}, {69, 232},
{71, 234}, {46, 128}, {127, 209}, {126, 208}, {111, 193}, {110, 192}, {47, 129},
{62, 144}, {63, 145}, {6, 169}, {7, 168}, {22, 185}, {23, 184}, {70, 233}, {71,
232}, {48, 128}, {127, 207}, {126, 206}, {125, 205}, {124, 204}, {123, 203},
{122, 202}, {121, 201}, {120, 200}, {119, 199}, {118, 198}, {117, 197}, {116,
196}, {115, 195}, {114, 194}, {113, 193}, {112, 192}, {52, 132}, {51, 131}, {50,
130}, {49, 129}, {53, 133}, {54, 134}, {55, 135}, {56, 136}, {57, 137}, {58,
138}, {59, 139}, {60, 140}, {61, 141}, {62, 142}, {63, 143}, {48, 130}, {125,
207}, {124, 206}, {121, 203}, {120, 202}, {117, 199}, {116, 198}, {113, 195},
{112, 194}, {52, 134}, {49, 131}, {53, 135}, {56, 138}, {57, 139}, {60, 142},
{61, 143}, {50, 132}, {123, 205}, {122, 204}, {115, 197}, {114, 196}, {51, 133},
{58, 140}, {59, 141}, {13, 176}, {15, 178}, {77, 240}, {79, 242}, {54, 136},
{119, 201}, {118, 200}, {55, 137}, {14, 177}, {15, 176}, {78, 241}, {79, 240},
{64, 144}, {111, 191}, {110, 190}, {109, 189}, {108, 188}, {107, 187}, {106,
186}, {105, 185}, {104, 184}, {103, 183}, {102, 182}, {101, 181}, {100, 180},
{99, 179}, {98, 178}, {97, 177}, {96, 176}, {65, 145}, {66, 146}, {67, 147},
{68, 148}, {69, 149}, {70, 150}, {71, 151}, {72, 152}, {73, 153}, {74, 154},
{75, 155}, {76, 156}, {77, 157}, {78, 158}, {79, 159}, {64, 146}, {109, 191},
{108, 190}, {105, 187}, {104, 186}, {101, 183}, {100, 182}, {97, 179}, {96,
178}, {65, 147}, {68, 150}, {69, 151}, {72, 154}, {73, 155}, {76, 158}, {77,
159}, {66, 148}, {107, 189}, {106, 188}, {99, 181}, {98, 180}, {67, 149}, {74,
156}, {75, 157}, {29, 192}, {31, 194}, {61, 224}, {63, 226}, {70, 152}, {103,
185}, {102, 184}, {71, 153}, {30, 193}, {31, 192}, {62, 225}, {63, 224}, {32,
193}, {52, 213}, {50, 211}, {48, 209}, {46, 207}, {44, 205}, {42, 203}, {40,
201}, {38, 199}, {36, 197}, {34, 195}, {54, 215}, {56, 217}, {58, 219}, {60,
221}, {62, 223}, {32, 195}, {49, 210}, {48, 211}, {45, 206}, {44, 207}, {41,
202}, {40, 203}, {37, 198}, {36, 199}, {33, 194}, {52, 215}, {53, 214}, {56,
219}, {57, 218}, {60, 223}, {61, 222}, {33, 196}, {51, 214}, {49, 212}, {43,
206}, {41, 204}, {35, 198}, {57, 220}, {59, 222}, {34, 197}, {51, 212}, {50,
213}, {43, 204}, {42, 205}, {35, 196}, {58, 221}, {59, 220}, {37, 200}, {39,
202}, {53, 216}, {55, 218}, {78, 160}, {95, 177}, {79, 161}, {94, 176}, {38,
201}, {39, 200}, {54, 217}, {55, 216}, {80, 160}, {95, 175}, {81, 161}, {83,
163}, {84, 164}, {85, 165}, {86, 166}, {87, 167}, {88, 168}, {89, 169}, {90,
170}, {91, 171}, {92, 172}, {93, 173}, {94, 174}, {1, 243}, {80, 162}, {81,
163}, {84, 166}, {85, 167}, {88, 170}, {89, 171}, {92, 174}, {93, 175}, {82,
164}, {83, 165}, {90, 172}, {91, 173}, {45, 208}, {47, 210}, {86, 168}, {87,
169}, {46, 209}, {47, 208} }>;
(II) A more general form is to represent the graph as the orbit of {162, 163}
under the group generated by the following permutations:
a: (2, 81)(3, 80)(4, 79)(5, 78)(6, 77)(7, 76)(8, 75)(9, 74)(10, 73)(11, 72)(12,
71)(13, 70)(14, 69)(15, 68)(16, 67)(17, 66)(18, 65)(19, 64)(20, 63)(21, 62)(22,
61)(23, 60)(24, 59)(25, 58)(26, 57)(27, 56)(28, 55)(29, 54)(30, 53)(31, 52)(32,
51)(33, 50)(34, 49)(35, 48)(36, 47)(37, 46)(38, 45)(39, 44)(40, 43)(41, 42)(83,
162)(84, 161)(85, 160)(86, 159)(87, 158)(88, 157)(89, 156)(90, 155)(91, 154)(92,
153)(93, 152)(94, 151)(95, 150)(96, 149)(97, 148)(98, 147)(99, 146)(100,
145)(101, 144)(102, 143)(103, 142)(104, 141)(105, 140)(106, 139)(107, 138)(108,
137)(109, 136)(110, 135)(111, 134)(112, 133)(113, 132)(114, 131)(115, 130)(116,
129)(117, 128)(118, 127)(119, 126)(120, 125)(121, 124)(122, 123)(164, 243)(165,
242)(166, 241)(167, 240)(168, 239)(169, 238)(170, 237)(171, 236)(172, 235)(173,
234)(174, 233)(175, 232)(176, 231)(177, 230)(178, 229)(179, 228)(180, 227)(181,
226)(182, 225)(183, 224)(184, 223)(185, 222)(186, 221)(187, 220)(188, 219)(189,
218)(190, 217)(191, 216)(192, 215)(193, 214)(194, 213)(195, 212)(196, 211)(197,
210)(198, 209)(199, 208)(200, 207)(201, 206)(202, 205)(203, 204) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (82, 163)(83, 164)(84, 165)(85, 166)(86, 167)(87, 168)(88, 169)(89, 170)(90,
171)(91, 172)(92, 173)(93, 174)(94, 175)(95, 176)(96, 177)(97, 178)(98, 179)(99,
180)(100, 181)(101, 182)(102, 183)(103, 184)(104, 185)(105, 186)(106, 187)(107,
188)(108, 189)(109, 190)(110, 191)(111, 192)(112, 193)(113, 194)(114, 195)(115,
196)(116, 197)(117, 198)(118, 199)(119, 200)(120, 201)(121, 202)(122, 203)(123,
204)(124, 205)(125, 206)(126, 207)(127, 208)(128, 209)(129, 210)(130, 211)(131,
212)(132, 213)(133, 214)(134, 215)(135, 216)(136, 217)(137, 218)(138, 219)(139,
220)(140, 221)(141, 222)(142, 223)(143, 224)(144, 225)(145, 226)(146, 227)(147,
228)(148, 229)(149, 230)(150, 231)(151, 232)(152, 233)(153, 234)(154, 235)(155,
236)(156, 237)(157, 238)(158, 239)(159, 240)(160, 241)(161, 242)(162, 243)
c: (1, 82)(2, 83)(3, 84)(4, 85)(5, 86)(6, 87)(7, 88)(8, 89)(9, 90)(10, 91)(11,
92)(12, 93)(13, 94)(14, 95)(15, 96)(16, 97)(17, 98)(18, 99)(19, 100)(20,
101)(21, 102)(22, 103)(23, 104)(24, 105)(25, 106)(26, 107)(27, 108)(28, 109)(29,
110)(30, 111)(31, 112)(32, 113)(33, 114)(34, 115)(35, 116)(36, 117)(37, 118)(38,
119)(39, 120)(40, 121)(41, 122)(42, 123)(43, 124)(44, 125)(45, 126)(46, 127)(47,
128)(48, 129)(49, 130)(50, 131)(51, 132)(52, 133)(53, 134)(54, 135)(55, 136)(56,
137)(57, 138)(58, 139)(59, 140)(60, 141)(61, 142)(62, 143)(63, 144)(64, 145)(65,
146)(66, 147)(67, 148)(68, 149)(69, 150)(70, 151)(71, 152)(72, 153)(73, 154)(74,
155)(75, 156)(76, 157)(77, 158)(78, 159)(79, 160)(80, 161)(81, 162)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81)(82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162)(163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243)
C4[ 243, 1 ]
243
-1 243 83 162 164
-2 165 82 84 163
-3 166 83 85 164
-4 165 167 84 86
-5 166 168 85 87
-6 88 167 169 86
-7 89 168 170 87
-8 88 90 169 171
-9 89 91 170 172
-10 90 92 171 173
-11 91 93 172 174
-12 92 94 173 175
-13 176 93 95 174
-14 177 94 96 175
-15 176 178 95 97
-16 177 179 96 98
-17 99 178 180 97
-18 100 179 181 98
-19 99 101 180 182
-20 100 102 181 183
-21 101 103 182 184
-22 102 104 183 185
-23 103 105 184 186
-24 187 104 106 185
-25 188 105 107 186
-26 187 189 106 108
-27 188 190 107 109
-28 110 189 191 108
-29 111 190 192 109
-30 110 112 191 193
-31 111 113 192 194
-32 112 114 193 195
-33 113 115 194 196
-34 114 116 195 197
-35 198 115 117 196
-36 199 116 118 197
-37 198 200 117 119
-38 199 201 118 120
-39 121 200 202 119
-40 122 201 203 120
-41 121 123 202 204
-42 122 124 203 205
-43 123 125 204 206
-44 124 126 205 207
-45 125 127 206 208
-46 209 126 128 207
-47 210 127 129 208
-48 209 211 128 130
-49 210 212 129 131
-50 132 211 213 130
-51 133 212 214 131
-52 132 134 213 215
-53 133 135 214 216
-54 134 136 215 217
-55 135 137 216 218
-56 136 138 217 219
-57 220 137 139 218
-58 221 138 140 219
-59 220 222 139 141
-60 221 223 140 142
-61 143 222 224 141
-62 144 223 225 142
-63 143 145 224 226
-64 144 146 225 227
-65 145 147 226 228
-66 146 148 227 229
-67 147 149 228 230
-68 231 148 150 229
-69 232 149 151 230
-70 231 233 150 152
-71 232 234 151 153
-72 154 233 235 152
-73 155 234 236 153
-74 154 156 235 237
-75 155 157 236 238
-76 156 158 237 239
-77 157 159 238 240
-78 158 160 239 241
-79 242 159 161 240
-80 243 160 162 241
-81 242 82 161 163
-82 243 2 81 164
-83 165 1 3 163
-84 166 2 4 164
-85 165 167 3 5
-86 166 168 4 6
-87 167 169 5 7
-88 168 170 6 8
-89 169 171 7 9
-90 170 172 8 10
-91 11 171 173 9
-92 12 172 174 10
-93 11 13 173 175
-94 176 12 14 174
-95 177 13 15 175
-96 176 178 14 16
-97 177 179 15 17
-98 178 180 16 18
-99 179 181 17 19
-100 180 182 18 20
-101 181 183 19 21
-102 22 182 184 20
-103 23 183 185 21
-104 22 24 184 186
-105 187 23 25 185
-106 188 24 26 186
-107 187 189 25 27
-108 188 190 26 28
-109 189 191 27 29
-110 190 192 28 30
-111 191 193 29 31
-112 192 194 30 32
-113 33 193 195 31
-114 34 194 196 32
-115 33 35 195 197
-116 198 34 36 196
-117 199 35 37 197
-118 198 200 36 38
-119 199 201 37 39
-120 200 202 38 40
-121 201 203 39 41
-122 202 204 40 42
-123 203 205 41 43
-124 44 204 206 42
-125 45 205 207 43
-126 44 46 206 208
-127 209 45 47 207
-128 210 46 48 208
-129 209 211 47 49
-130 210 212 48 50
-131 211 213 49 51
-132 212 214 50 52
-133 213 215 51 53
-134 214 216 52 54
-135 55 215 217 53
-136 56 216 218 54
-137 55 57 217 219
-138 220 56 58 218
-139 221 57 59 219
-140 220 222 58 60
-141 221 223 59 61
-142 222 224 60 62
-143 223 225 61 63
-144 224 226 62 64
-145 225 227 63 65
-146 66 226 228 64
-147 67 227 229 65
-148 66 68 228 230
-149 231 67 69 229
-150 232 68 70 230
-151 231 233 69 71
-152 232 234 70 72
-153 233 235 71 73
-154 234 236 72 74
-155 235 237 73 75
-156 236 238 74 76
-157 77 237 239 75
-158 78 238 240 76
-159 77 79 239 241
-160 242 78 80 240
-161 243 79 81 241
-162 242 1 80 163
-163 2 81 83 162
-164 1 3 82 84
-165 2 4 83 85
-166 3 5 84 86
-167 4 6 85 87
-168 88 5 7 86
-169 89 6 8 87
-170 88 90 7 9
-171 89 91 8 10
-172 11 90 92 9
-173 12 91 93 10
-174 11 13 92 94
-175 12 14 93 95
-176 13 15 94 96
-177 14 16 95 97
-178 15 17 96 98
-179 99 16 18 97
-180 100 17 19 98
-181 99 101 18 20
-182 100 102 19 21
-183 22 101 103 20
-184 23 102 104 21
-185 22 24 103 105
-186 23 25 104 106
-187 24 26 105 107
-188 25 27 106 108
-189 26 28 107 109
-190 110 27 29 108
-191 111 28 30 109
-192 110 112 29 31
-193 111 113 30 32
-194 33 112 114 31
-195 34 113 115 32
-196 33 35 114 116
-197 34 36 115 117
-198 35 37 116 118
-199 36 38 117 119
-200 37 39 118 120
-201 121 38 40 119
-202 122 39 41 120
-203 121 123 40 42
-204 122 124 41 43
-205 44 123 125 42
-206 45 124 126 43
-207 44 46 125 127
-208 45 47 126 128
-209 46 48 127 129
-210 47 49 128 130
-211 48 50 129 131
-212 132 49 51 130
-213 133 50 52 131
-214 132 134 51 53
-215 133 135 52 54
-216 55 134 136 53
-217 56 135 137 54
-218 55 57 136 138
-219 56 58 137 139
-220 57 59 138 140
-221 58 60 139 141
-222 59 61 140 142
-223 143 60 62 141
-224 144 61 63 142
-225 143 145 62 64
-226 144 146 63 65
-227 66 145 147 64
-228 67 146 148 65
-229 66 68 147 149
-230 67 69 148 150
-231 68 70 149 151
-232 69 71 150 152
-233 70 72 151 153
-234 154 71 73 152
-235 155 72 74 153
-236 154 156 73 75
-237 155 157 74 76
-238 77 156 158 75
-239 78 157 159 76
-240 77 79 158 160
-241 78 80 159 161
-242 79 81 160 162
-243 1 80 82 161
0