C4graphGraph forms for C4 [ 243, 2 ] = {4,4}_<18,9>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 243, 2 ] = {4,4}_<18,9>.

(I) Following is a form readable by MAGMA:

g:=Graph<243|{ {2, 3}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {1, 2}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {89, 90}, {85, 86}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {151, 152}, {1, 27}, {4, 31}, {196, 223}, {192, 219}, {164, 191}, {68, 95}, {64, 91}, {32, 59}, {36, 63}, {96, 123}, {100, 127}, {128, 155}, {132, 159}, {160, 187}, {1, 28}, {195, 222}, {193, 220}, {163, 190}, {67, 94}, {65, 92}, {3, 30}, {33, 60}, {35, 62}, {97, 124}, {99, 126}, {129, 156}, {131, 158}, {161, 188}, {163, 189}, {2, 29}, {239, 240}, {207, 208}, {194, 221}, {175, 176}, {162, 189}, {79, 80}, {66, 93}, {15, 16}, {34, 61}, {47, 48}, {98, 125}, {111, 112}, {130, 157}, {143, 144}, {5, 32}, {215, 242}, {213, 240}, {207, 234}, {205, 232}, {199, 226}, {197, 224}, {87, 114}, {85, 112}, {79, 106}, {77, 104}, {71, 98}, {69, 96}, {7, 34}, {13, 40}, {15, 42}, {21, 48}, {23, 50}, {29, 56}, {31, 58}, {93, 120}, {95, 122}, {133, 160}, {135, 162}, {141, 168}, {143, 170}, {149, 176}, {151, 178}, {157, 184}, {159, 186}, {6, 33}, {214, 241}, {206, 233}, {198, 225}, {86, 113}, {78, 105}, {70, 97}, {14, 41}, {22, 49}, {30, 57}, {94, 121}, {134, 161}, {142, 169}, {150, 177}, {158, 185}, {28, 54}, {217, 243}, {136, 162}, {8, 35}, {216, 243}, {204, 231}, {200, 227}, {88, 115}, {76, 103}, {72, 99}, {12, 39}, {24, 51}, {28, 55}, {92, 119}, {136, 163}, {140, 167}, {152, 179}, {156, 183}, {9, 36}, {203, 230}, {201, 228}, {91, 118}, {89, 116}, {75, 102}, {73, 100}, {11, 38}, {25, 52}, {27, 54}, {137, 164}, {139, 166}, {153, 180}, {155, 182}, {10, 37}, {202, 229}, {90, 117}, {74, 101}, {26, 53}, {138, 165}, {154, 181}, {16, 43}, {212, 239}, {208, 235}, {84, 111}, {80, 107}, {20, 47}, {144, 171}, {148, 175}, {17, 44}, {211, 238}, {209, 236}, {83, 110}, {81, 108}, {19, 46}, {145, 172}, {147, 174}, {82, 108}, {18, 45}, {223, 224}, {210, 237}, {82, 109}, {31, 32}, {95, 96}, {146, 173}, {159, 160}, {37, 64}, {191, 218}, {189, 216}, {183, 210}, {181, 208}, {175, 202}, {173, 200}, {167, 194}, {165, 192}, {63, 90}, {61, 88}, {55, 82}, {53, 80}, {39, 66}, {45, 72}, {47, 74}, {55, 81}, {190, 216}, {38, 65}, {190, 217}, {182, 209}, {174, 201}, {166, 193}, {62, 89}, {54, 81}, {46, 73}, {40, 67}, {188, 215}, {184, 211}, {172, 199}, {168, 195}, {60, 87}, {56, 83}, {44, 71}, {41, 68}, {187, 214}, {185, 212}, {171, 198}, {169, 196}, {59, 86}, {57, 84}, {43, 70}, {42, 69}, {186, 213}, {170, 197}, {58, 85}, {48, 75}, {180, 207}, {176, 203}, {52, 79}, {49, 76}, {179, 206}, {177, 204}, {51, 78}, {50, 77}, {191, 192}, {178, 205}, {63, 64}, {24, 222}, {25, 223}, {19, 217}, {22, 220}, {23, 221}, {20, 218}, {21, 219}, {2, 227}, {4, 229}, {6, 231}, {8, 233}, {10, 235}, {12, 237}, {14, 239}, {16, 241}, {18, 243}, {1, 226}, {5, 230}, {9, 234}, {13, 238}, {17, 242}, {101, 128}, {103, 130}, {109, 136}, {111, 138}, {117, 144}, {119, 146}, {125, 152}, {127, 154}, {3, 228}, {11, 236}, {102, 129}, {110, 137}, {118, 145}, {126, 153}, {109, 135}, {104, 131}, {108, 135}, {120, 147}, {124, 151}, {105, 132}, {107, 134}, {121, 148}, {123, 150}, {7, 232}, {106, 133}, {122, 149}, {26, 224}, {27, 225}, {112, 139}, {116, 143}, {113, 140}, {115, 142}, {15, 240}, {114, 141}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 28)(3, 55)(4, 82)(5, 109)(6, 136)(7, 163)(8, 190)(9, 217)(10, 19)(11, 46)(12, 73)(13, 100)(14, 127)(15, 154)(16, 181)(17, 208)(18, 235)(20, 37)(21, 64)(22, 91)(23, 118)(24, 145)(25, 172)(26, 199)(27, 226)(30, 56)(31, 83)(32, 110)(33, 137)(34, 164)(35, 191)(36, 218)(38, 47)(39, 74)(40, 101)(41, 128)(42, 155)(43, 182)(44, 209)(45, 236)(48, 65)(49, 92)(50, 119)(51, 146)(52, 173)(53, 200)(54, 227)(58, 84)(59, 111)(60, 138)(61, 165)(62, 192)(63, 219)(66, 75)(67, 102)(68, 129)(69, 156)(70, 183)(71, 210)(72, 237)(76, 93)(77, 120)(78, 147)(79, 174)(80, 201)(81, 228)(86, 112)(87, 139)(88, 166)(89, 193)(90, 220)(94, 103)(95, 130)(96, 157)(97, 184)(98, 211)(99, 238)(104, 121)(105, 148)(106, 175)(107, 202)(108, 229)(114, 140)(115, 167)(116, 194)(117, 221)(122, 131)(123, 158)(124, 185)(125, 212)(126, 239)(132, 149)(133, 176)(134, 203)(135, 230)(142, 168)(143, 195)(144, 222)(150, 159)(151, 186)(152, 213)(153, 240)(160, 177)(161, 204)(162, 231)(170, 196)(171, 223)(178, 187)(179, 214)(180, 241)(188, 205)(189, 232)(198, 224)(206, 215)(207, 242)(216, 233)(234, 243)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27)(28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54)(55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81)(82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135)(136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162)(163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189)(190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)(217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243)
c: (2, 226)(3, 199)(4, 172)(5, 145)(6, 118)(7, 91)(8, 64)(9, 37)(11, 235)(12, 208)(13, 181)(14, 154)(15, 127)(16, 100)(17, 73)(18, 46)(20, 217)(21, 190)(22, 163)(23, 136)(24, 109)(25, 82)(26, 55)(27, 28)(29, 225)(30, 198)(31, 171)(32, 144)(33, 117)(34, 90)(35, 63)(38, 234)(39, 207)(40, 180)(41, 153)(42, 126)(43, 99)(44, 72)(47, 243)(48, 216)(49, 189)(50, 162)(51, 135)(52, 108)(53, 81)(56, 224)(57, 197)(58, 170)(59, 143)(60, 116)(61, 89)(65, 233)(66, 206)(67, 179)(68, 152)(69, 125)(70, 98)(74, 242)(75, 215)(76, 188)(77, 161)(78, 134)(79, 107)(83, 223)(84, 196)(85, 169)(86, 142)(87, 115)(92, 232)(93, 205)(94, 178)(95, 151)(96, 124)(101, 241)(102, 214)(103, 187)(104, 160)(105, 133)(110, 222)(111, 195)(112, 168)(113, 141)(119, 231)(120, 204)(121, 177)(122, 150)(128, 240)(129, 213)(130, 186)(131, 159)(137, 221)(138, 194)(139, 167)(146, 230)(147, 203)(148, 176)(155, 239)(156, 212)(157, 185)(164, 220)(165, 193)(173, 229)(174, 202)(182, 238)(183, 211)(191, 219)(200, 228)(209, 237)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 243, 2 ]
243
-1 2 27 28 226
-2 1 3 29 227
-3 2 4 30 228
-4 3 5 31 229
-5 4 6 32 230
-6 33 231 5 7
-7 34 232 6 8
-8 35 233 7 9
-9 36 234 8 10
-10 11 37 235 9
-11 12 38 236 10
-12 11 13 39 237
-13 12 14 40 238
-14 13 15 41 239
-15 14 16 42 240
-16 15 17 43 241
-17 44 242 16 18
-18 45 243 17 19
-19 46 18 217 20
-20 47 19 218 21
-21 22 48 20 219
-22 220 23 49 21
-23 22 221 24 50
-24 23 222 25 51
-25 24 223 26 52
-26 25 224 27 53
-27 1 26 225 54
-28 55 1 29 54
-29 56 2 28 30
-30 57 3 29 31
-31 58 4 30 32
-32 33 59 5 31
-33 34 60 6 32
-34 33 35 61 7
-35 34 36 62 8
-36 35 37 63 9
-37 36 38 64 10
-38 11 37 39 65
-39 66 12 38 40
-40 67 13 39 41
-41 68 14 40 42
-42 69 15 41 43
-43 44 70 16 42
-44 45 71 17 43
-45 44 46 72 18
-46 45 47 73 19
-47 46 48 74 20
-48 47 49 75 21
-49 22 48 50 76
-50 77 23 49 51
-51 78 24 50 52
-52 79 25 51 53
-53 80 26 52 54
-54 81 27 28 53
-55 56 81 82 28
-56 55 57 83 29
-57 56 58 84 30
-58 57 59 85 31
-59 58 60 86 32
-60 33 59 61 87
-61 88 34 60 62
-62 89 35 61 63
-63 90 36 62 64
-64 91 37 63 65
-65 66 92 38 64
-66 67 93 39 65
-67 66 68 94 40
-68 67 69 95 41
-69 68 70 96 42
-70 69 71 97 43
-71 44 70 72 98
-72 99 45 71 73
-73 100 46 72 74
-74 101 47 73 75
-75 102 48 74 76
-76 77 103 49 75
-77 78 104 50 76
-78 77 79 105 51
-79 78 80 106 52
-80 79 81 107 53
-81 55 80 108 54
-82 55 83 108 109
-83 110 56 82 84
-84 111 57 83 85
-85 112 58 84 86
-86 113 59 85 87
-87 88 114 60 86
-88 89 115 61 87
-89 88 90 116 62
-90 89 91 117 63
-91 90 92 118 64
-92 91 93 119 65
-93 66 92 94 120
-94 121 67 93 95
-95 122 68 94 96
-96 123 69 95 97
-97 124 70 96 98
-98 99 125 71 97
-99 100 126 72 98
-100 99 101 127 73
-101 100 102 128 74
-102 101 103 129 75
-103 102 104 130 76
-104 77 103 105 131
-105 132 78 104 106
-106 133 79 105 107
-107 134 80 106 108
-108 135 81 82 107
-109 110 135 136 82
-110 111 137 83 109
-111 110 112 138 84
-112 111 113 139 85
-113 112 114 140 86
-114 113 115 141 87
-115 88 114 116 142
-116 143 89 115 117
-117 144 90 116 118
-118 145 91 117 119
-119 146 92 118 120
-120 121 147 93 119
-121 122 148 94 120
-122 121 123 149 95
-123 122 124 150 96
-124 123 125 151 97
-125 124 126 152 98
-126 99 125 127 153
-127 154 100 126 128
-128 155 101 127 129
-129 156 102 128 130
-130 157 103 129 131
-131 132 158 104 130
-132 133 159 105 131
-133 132 134 160 106
-134 133 135 161 107
-135 134 162 108 109
-136 137 162 163 109
-137 110 136 138 164
-138 165 111 137 139
-139 166 112 138 140
-140 167 113 139 141
-141 168 114 140 142
-142 143 169 115 141
-143 144 170 116 142
-144 143 145 171 117
-145 144 146 172 118
-146 145 147 173 119
-147 146 148 174 120
-148 121 147 149 175
-149 176 122 148 150
-150 177 123 149 151
-151 178 124 150 152
-152 179 125 151 153
-153 154 180 126 152
-154 155 181 127 153
-155 154 156 182 128
-156 155 157 183 129
-157 156 158 184 130
-158 157 159 185 131
-159 132 158 160 186
-160 187 133 159 161
-161 188 134 160 162
-162 189 135 136 161
-163 189 190 136 164
-164 165 191 137 163
-165 166 192 138 164
-166 165 167 193 139
-167 166 168 194 140
-168 167 169 195 141
-169 168 170 196 142
-170 143 169 171 197
-171 198 144 170 172
-172 199 145 171 173
-173 200 146 172 174
-174 201 147 173 175
-175 176 202 148 174
-176 177 203 149 175
-177 176 178 204 150
-178 177 179 205 151
-179 178 180 206 152
-180 179 181 207 153
-181 154 180 182 208
-182 209 155 181 183
-183 210 156 182 184
-184 211 157 183 185
-185 212 158 184 186
-186 187 213 159 185
-187 188 214 160 186
-188 187 189 215 161
-189 188 216 162 163
-190 191 216 217 163
-191 190 192 218 164
-192 165 191 193 219
-193 220 166 192 194
-194 221 167 193 195
-195 222 168 194 196
-196 223 169 195 197
-197 198 224 170 196
-198 199 225 171 197
-199 198 200 226 172
-200 199 201 227 173
-201 200 202 228 174
-202 201 203 229 175
-203 176 202 204 230
-204 231 177 203 205
-205 232 178 204 206
-206 233 179 205 207
-207 234 180 206 208
-208 209 235 181 207
-209 210 236 182 208
-210 209 211 237 183
-211 210 212 238 184
-212 211 213 239 185
-213 212 214 240 186
-214 187 213 215 241
-215 242 188 214 216
-216 243 189 190 215
-217 243 190 19 218
-218 191 217 20 219
-219 220 192 218 21
-220 22 221 193 219
-221 220 23 222 194
-222 221 24 223 195
-223 222 25 224 196
-224 223 26 225 197
-225 198 224 27 226
-226 1 199 225 227
-227 2 200 226 228
-228 3 201 227 229
-229 4 202 228 230
-230 231 5 203 229
-231 232 6 204 230
-232 231 233 7 205
-233 232 234 8 206
-234 233 235 9 207
-235 234 236 10 208
-236 11 209 235 237
-237 12 210 236 238
-238 13 211 237 239
-239 14 212 238 240
-240 15 213 239 241
-241 242 16 214 240
-242 243 17 215 241
-243 242 18 216 217
0

**************