[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 243, 2 ]. See Glossary for some
detail.
{4, 4}_< 18, 9> = PS( 27, 9; 1) = MPS( 27, 18; 1)
= PS( 9, 27; 1) = MPS( 9, 54; 1) = UG(ATD[243, 25])
= UG(ATD[243, 26]) = MG(Rmap(243, 51) { 18, 27| 18}_ 54) = DG(Rmap(243, 52) {
27, 18| 18}_ 54)
= DG(Rmap(243, 95) { 18, 54| 2}_ 27) = AT[243, 9]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 1 | - | 0 | - | - | 1 |
4 | 0 | - | 26 | - | 0 | - | 15 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 15 | - |
6 | - | - | 0 | - | 0 | - | 16 | - | 16 |
7 | 0 | - | - | 12 | - | 11 | - | 0 | - |
8 | - | 0 | - | - | 12 | - | 0 | - | 1 |
9 | 0 | - | 26 | - | - | 11 | - | 26 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | - | 1 |
3 | 0 | 26 | - | 0 | 26 | - | - | - | - |
4 | - | 0 | 0 | - | 0 | 26 | - | - | - |
5 | - | - | 1 | 0 | - | 0 | 26 | - | - |
6 | - | - | - | 1 | 0 | - | 0 | 6 | - |
7 | - | - | - | - | 1 | 0 | - | 7 | 7 |
8 | 0 | - | - | - | - | 21 | 20 | - | 1 |
9 | 0 | 26 | - | - | - | - | 20 | 26 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 1 | - | 0 | - | - | 1 |
4 | 0 | - | 26 | - | 0 | - | 6 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 6 | - |
6 | - | - | 0 | - | 0 | - | 7 | - | 7 |
7 | 0 | - | - | 21 | - | 20 | - | 0 | - |
8 | - | 0 | - | - | 21 | - | 0 | - | 1 |
9 | 0 | - | 26 | - | - | 20 | - | 26 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 26 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | 1 26 | 0 | - | - | - | - | - | - |
3 | - | 0 | 1 26 | 0 | - | - | - | - | - |
4 | - | - | 0 | 1 26 | 0 | - | - | - | - |
5 | - | - | - | 0 | 1 26 | 0 | - | - | - |
6 | - | - | - | - | 0 | 1 26 | 0 | - | - |
7 | - | - | - | - | - | 0 | 1 26 | 0 | - |
8 | - | - | - | - | - | - | 0 | 1 26 | 9 |
9 | 0 | - | - | - | - | - | - | 18 | 1 26 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | - | 0 26 |
2 | 0 26 | - | 0 1 | - | - | - | - | - | - |
3 | - | 0 26 | - | 0 1 | - | - | - | - | - |
4 | - | - | 0 26 | - | 0 1 | - | - | - | - |
5 | - | - | - | 0 26 | - | 0 1 | - | - | - |
6 | - | - | - | - | 0 26 | - | 0 1 | - | - |
7 | - | - | - | - | - | 0 26 | - | 0 1 | - |
8 | - | - | - | - | - | - | 0 26 | - | 9 10 |
9 | 0 1 | - | - | - | - | - | - | 17 18 | - |