C4graphConstructions for C4[ 243, 2 ] = {4,4}_<18,9>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 243, 2 ]. See Glossary for some detail.

{4, 4}_< 18, 9> = PS( 27, 9; 1) = MPS( 27, 18; 1)

      = PS( 9, 27; 1) = MPS( 9, 54; 1) = UG(ATD[243, 25])

      = UG(ATD[243, 26]) = MG(Rmap(243, 51) { 18, 27| 18}_ 54) = DG(Rmap(243, 52) { 27, 18| 18}_ 54)

      = DG(Rmap(243, 95) { 18, 54| 2}_ 27) = AT[243, 9]

Cyclic coverings

mod 27:
123456789
1 - 0 - 0 - - 0 - 0
2 0 - 0 - 0 - - 0 -
3 - 0 - 1 - 0 - - 1
4 0 - 26 - 0 - 15 - -
5 - 0 - 0 - 0 - 15 -
6 - - 0 - 0 - 16 - 16
7 0 - - 12 - 11 - 0 -
8 - 0 - - 12 - 0 - 1
9 0 - 26 - - 11 - 26 -

mod 27:
123456789
1 - 0 0 - - - - 0 0
2 0 - 1 0 - - - - 1
3 0 26 - 0 26 - - - -
4 - 0 0 - 0 26 - - -
5 - - 1 0 - 0 26 - -
6 - - - 1 0 - 0 6 -
7 - - - - 1 0 - 7 7
8 0 - - - - 21 20 - 1
9 0 26 - - - - 20 26 -

mod 27:
123456789
1 - 0 - 0 - - 0 - 0
2 0 - 0 - 0 - - 0 -
3 - 0 - 1 - 0 - - 1
4 0 - 26 - 0 - 6 - -
5 - 0 - 0 - 0 - 6 -
6 - - 0 - 0 - 7 - 7
7 0 - - 21 - 20 - 0 -
8 - 0 - - 21 - 0 - 1
9 0 - 26 - - 20 - 26 -

mod 27:
123456789
1 1 26 0 - - - - - - 0
2 0 1 26 0 - - - - - -
3 - 0 1 26 0 - - - - -
4 - - 0 1 26 0 - - - -
5 - - - 0 1 26 0 - - -
6 - - - - 0 1 26 0 - -
7 - - - - - 0 1 26 0 -
8 - - - - - - 0 1 26 9
9 0 - - - - - - 18 1 26

mod 27:
123456789
1 - 0 1 - - - - - - 0 26
2 0 26 - 0 1 - - - - - -
3 - 0 26 - 0 1 - - - - -
4 - - 0 26 - 0 1 - - - -
5 - - - 0 26 - 0 1 - - -
6 - - - - 0 26 - 0 1 - -
7 - - - - - 0 26 - 0 1 -
8 - - - - - - 0 26 - 9 10
9 0 1 - - - - - - 17 18 -