[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 15 ] =
UG(ATD[243,17]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {119, 127}, {224, 232}, {211, 219}, {148, 157}, {54, 60}, {113,
123}, {115, 121}, {1, 10}, {193, 202}, {81, 93}, {209, 221}, {67, 78}, {146,
159}, {83, 94}, {133, 138}, {135, 136}, {72, 88}, {79, 95}, {65, 80}, {138,
155}, {135, 150}, {101, 116}, {1, 19}, {3, 17}, {128, 148}, {173, 185}, {47,
58}, {103, 114}, {12, 26}, {166, 176}, {164, 178}, {38, 48}, {36, 51}, {143,
152}, {65, 86}, {164, 188}, {175, 183}, {10, 19}, {166, 186}, {1, 28}, {8, 21},
{33, 63}, {136, 150}, {45, 50}, {202, 213}, {200, 215}, {3, 35}, {192, 224},
{93, 124}, {196, 229}, {69, 103}, {90, 120}, {23, 52}, {1, 37}, {206, 234},
{145, 181}, {136, 172}, {19, 55}, {10, 46}, {83, 118}, {198, 227}, {91, 126},
{31, 56}, {76, 107}, {78, 105}, {155, 179}, {93, 116}, {67, 105}, {21, 62},
{129, 170}, {25, 50}, {14, 34}, {157, 177}, {29, 49}, {81, 124}, {140, 162}, {8,
39}, {199, 232}, {147, 188}, {16, 32}, {194, 242}, {130, 178}, {27, 43}, {74,
122}, {213, 228}, {220, 237}, {30, 44}, {139, 185}, {95, 108}, {25, 45}, {196,
240}, {132, 176}, {215, 226}, {222, 235}, {82, 100}, {91, 109}, {69, 114}, {147,
164}, {71, 112}, {5, 61}, {68, 124}, {93, 101}, {12, 53}, {156, 165}, {138,
179}, {28, 37}, {90, 96}, {141, 183}, {7, 59}, {70, 122}, {158, 163}, {149,
171}, {210, 236}, {208, 238}, {84, 107}, {217, 230}, {207, 240}, {205, 242},
{20, 84}, {16, 81}, {177, 240}, {151, 213}, {44, 111}, {144, 212}, {18, 87},
{158, 219}, {39, 98}, {35, 102}, {141, 203}, {162, 228}, {160, 230}, {143, 201},
{30, 89}, {181, 242}, {174, 233}, {128, 199}, {37, 109}, {59, 115}, {55, 127},
{10, 64}, {153, 211}, {57, 117}, {161, 237}, {130, 206}, {27, 86}, {48, 125},
{28, 82}, {172, 226}, {144, 222}, {142, 192}, {140, 194}, {7, 72}, {9, 70}, {13,
92}, {26, 75}, {49, 99}, {186, 232}, {184, 234}, {17, 66}, {150, 197}, {30, 74},
{34, 117}, {188, 235}, {158, 201}, {156, 203}, {50, 101}, {36, 115}, {7, 95},
{142, 214}, {52, 108}, {46, 118}, {19, 73}, {186, 224}, {152, 195}, {18, 79},
{179, 238}, {36, 121}, {11, 85}, {133, 218}, {27, 123}, {165, 197}, {38, 71},
{169, 200}, {134, 231}, {12, 110}, {188, 222}, {9, 106}, {179, 208}, {5, 97},
{171, 207}, {167, 195}, {42, 76}, {151, 241}, {135, 225}, {58, 92}, {56, 94},
{44, 74}, {190, 217}, {24, 112}, {57, 80}, {175, 198}, {29, 119}, {63, 85}, {7,
108}, {56, 83}, {15, 99}, {131, 239}, {20, 121}, {40, 69}, {46, 64}, {142, 224},
{129, 241}, {32, 81}, {154, 235}, {41, 88}, {9, 122}, {191, 204}, {151, 228},
{149, 230}, {59, 72}, {47, 92}, {26, 110}, {177, 196}, {153, 239}, {48, 71},
{170, 221}, {167, 208}, {28, 100}, {181, 205}, {163, 219}, {57, 65}, {160, 217},
{2, 120}, {14, 117}, {172, 215}, {183, 203}, {43, 86}, {37, 91}, {169, 215},
{55, 73}, {20, 107}, {22, 105}, {2, 130}, {61, 189}, {52, 180}, {40, 168}, {23,
151}, {14, 142}, {88, 216}, {97, 225}, {60, 190}, {68, 199}, {104, 235}, {32,
164}, {63, 187}, {54, 178}, {98, 231}, {31, 153}, {77, 202}, {79, 200}, {24,
144}, {54, 190}, {75, 195}, {34, 171}, {50, 187}, {40, 161}, {86, 223}, {96,
233}, {11, 129}, {66, 201}, {25, 149}, {42, 166}, {77, 193}, {90, 214}, {9,
132}, {48, 189}, {99, 238}, {29, 146}, {126, 241}, {124, 243}, {102, 233}, {104,
231}, {42, 186}, {89, 201}, {18, 131}, {97, 240}, {32, 178}, {119, 229}, {83,
193}, {44, 184}, {55, 163}, {82, 199}, {4, 146}, {31, 137}, {29, 139}, {75,
220}, {77, 218}, {95, 200}, {106, 242}, {121, 227}, {127, 229}, {4, 159}, {62,
165}, {16, 140}, {65, 223}, {67, 221}, {74, 212}, {76, 210}, {6, 153}, {61,
162}, {22, 137}, {59, 155}, {70, 230}, {11, 170}, {2, 161}, {49, 146}, {23,
180}, {8, 173}, {38, 131}, {13, 168}, {17, 182}, {45, 138}, {43, 140}, {114,
213}, {116, 211}, {45, 133}, {106, 194}, {6, 175}, {53, 156}, {30, 180}, {58,
144}, {111, 197}, {68, 232}, {108, 192}, {66, 236}, {122, 212}, {120, 214}, {97,
207}, {47, 128}, {116, 219}, {56, 137}, {16, 162}, {27, 169}, {25, 171}, {18,
160}, {11, 191}, {54, 130}, {46, 154}, {100, 208}, {109, 217}, {3, 182}, {42,
159}, {84, 225}, {15, 184}, {118, 193}, {68, 243}, {5, 189}, {21, 173}, {114,
202}, {107, 210}, {4, 191}, {47, 148}, {99, 223}, {112, 204}, {125, 195}, {57,
134}, {6, 198}, {125, 189}, {39, 231}, {33, 226}, {100, 167}, {102, 165}, {40,
237}, {24, 222}, {26, 220}, {89, 158}, {113, 182}, {4, 204}, {64, 136}, {77,
133}, {38, 239}, {35, 233}, {13, 198}, {88, 147}, {90, 145}, {2, 206}, {41,
229}, {33, 237}, {79, 131}, {62, 243}, {123, 182}, {66, 143}, {96, 174}, {60,
236}, {82, 128}, {123, 169}, {70, 149}, {75, 152}, {76, 159}, {78, 157}, {84,
135}, {109, 190}, {12, 216}, {24, 204}, {6, 211}, {91, 141}, {111, 184}, {14,
214}, {73, 145}, {22, 206}, {3, 218}, {120, 161}, {61, 228}, {8, 209}, {125,
167}, {72, 147}, {127, 163}, {63, 226}, {101, 187}, {103, 185}, {110, 176},
{112, 174}, {105, 137}, {15, 238}, {51, 209}, {5, 225}, {15, 234}, {113, 148},
{21, 243}, {23, 241}, {80, 183}, {115, 155}, {36, 205}, {71, 174}, {67, 170},
{43, 194}, {85, 191}, {110, 132}, {64, 172}, {118, 154}, {103, 139}, {113, 157},
{34, 207}, {69, 168}, {53, 216}, {41, 196}, {89, 180}, {98, 143}, {13, 227},
{60, 210}, {58, 212}, {51, 221}, {49, 223}, {85, 187}, {87, 185}, {94, 176},
{104, 134}, {106, 132}, {31, 239}, {41, 216}, {96, 145}, {104, 154}, {117, 134},
{126, 141}, {52, 192}, {92, 168}, {39, 209}, {20, 227}, {87, 160}, {94, 166},
{35, 218}, {111, 150}, {87, 173}, {98, 152}, {102, 156}, {62, 197}, {22, 234},
{119, 139}, {73, 181}, {17, 236}, {33, 220}, {51, 205}, {53, 203}, {78, 177},
{126, 129}, {80, 175} }>;
(II) A more general form is to represent the graph as the orbit of {119, 127}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 206, 218, 146, 61, 175, 108, 39, 122)(11,
207, 219, 147, 62, 176, 100, 40, 123)(12, 199, 220, 148, 63, 177, 101, 41,
124)(13, 200, 221, 149, 55, 178, 102, 42, 125)(14, 201, 222, 150, 56, 179, 103,
43, 126)(15, 202, 223, 151, 57, 180, 104, 44, 118)(16, 203, 224, 152, 58, 172,
105, 45, 119)(17, 204, 225, 153, 59, 173, 106, 37, 120)(18, 205, 217, 145, 60,
174, 107, 38, 121)(19, 130, 35, 159, 189, 198, 95, 209, 70)(20, 131, 36, 160,
181, 190, 96, 210, 71)(21, 132, 28, 161, 182, 191, 97, 211, 72)(22, 133, 29,
162, 183, 192, 98, 212, 64)(23, 134, 30, 154, 184, 193, 99, 213, 65)(24, 135,
31, 155, 185, 194, 91, 214, 66)(25, 127, 32, 156, 186, 195, 92, 215, 67)(26,
128, 33, 157, 187, 196, 93, 216, 68)(27, 129, 34, 158, 188, 197, 94, 208,
69)(46, 234, 77, 49, 228, 80, 52, 231, 74)(47, 226, 78, 50, 229, 81, 53, 232,
75)(48, 227, 79, 51, 230, 73, 54, 233, 76)(82, 237, 113, 85, 240, 116, 88, 243,
110)(83, 238, 114, 86, 241, 117, 89, 235, 111)(84, 239, 115, 87, 242, 109, 90,
236, 112)(136, 137, 138, 139, 140, 141, 142, 143, 144)(163, 164, 165, 166, 167,
168, 169, 170, 171) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 10, 19)(2, 11, 20)(3, 12, 21)(4, 13, 22)(5, 14, 23)(6, 15, 24)(7, 16,
25)(8, 17, 26)(9, 18, 27)(28, 46, 55)(29, 47, 56)(30, 48, 57)(31, 49, 58)(32,
50, 59)(33, 51, 60)(34, 52, 61)(35, 53, 62)(36, 54, 63)(37, 64, 73)(38, 65,
74)(39, 66, 75)(40, 67, 76)(41, 68, 77)(42, 69, 78)(43, 70, 79)(44, 71, 80)(45,
72, 81)(82, 118, 127)(83, 119, 128)(84, 120, 129)(85, 121, 130)(86, 122,
131)(87, 123, 132)(88, 124, 133)(89, 125, 134)(90, 126, 135)(91, 136, 145)(92,
137, 146)(93, 138, 147)(94, 139, 148)(95, 140, 149)(96, 141, 150)(97, 142,
151)(98, 143, 152)(99, 144, 153)(100, 154, 163)(101, 155, 164)(102, 156,
165)(103, 157, 166)(104, 158, 167)(105, 159, 168)(106, 160, 169)(107, 161,
170)(108, 162, 171)(109, 172, 181)(110, 173, 182)(111, 174, 183)(112, 175,
184)(113, 176, 185)(114, 177, 186)(115, 178, 187)(116, 179, 188)(117, 180,
189)(190, 226, 205)(191, 227, 206)(192, 228, 207)(193, 229, 199)(194, 230,
200)(195, 231, 201)(196, 232, 202)(197, 233, 203)(198, 234, 204)(208, 235,
219)(209, 236, 220)(210, 237, 221)(211, 238, 222)(212, 239, 223)(213, 240,
224)(214, 241, 225)(215, 242, 217)(216, 243, 218)
c: (10, 28)(11, 29)(12, 30)(13, 31)(14, 32)(15, 33)(16, 34)(17, 35)(18, 36)(19,
37)(20, 38)(21, 39)(22, 40)(23, 41)(24, 42)(25, 43)(26, 44)(27, 45)(46, 82)(47,
83)(48, 84)(49, 85)(50, 86)(51, 87)(52, 88)(53, 89)(54, 90)(55, 91)(56, 92)(57,
93)(58, 94)(59, 95)(60, 96)(61, 97)(62, 98)(63, 99)(64, 100)(65, 101)(66,
102)(67, 103)(68, 104)(69, 105)(70, 106)(71, 107)(72, 108)(73, 109)(74, 110)(75,
111)(76, 112)(77, 113)(78, 114)(79, 115)(80, 116)(81, 117)(118, 128)(119,
129)(120, 130)(121, 131)(122, 132)(123, 133)(124, 134)(125, 135)(126, 127)(136,
167)(137, 168)(138, 169)(139, 170)(140, 171)(141, 163)(142, 164)(143, 165)(144,
166)(145, 190)(146, 191)(147, 192)(148, 193)(149, 194)(150, 195)(151, 196)(152,
197)(153, 198)(154, 199)(155, 200)(156, 201)(157, 202)(158, 203)(159, 204)(160,
205)(161, 206)(162, 207)(172, 208)(173, 209)(174, 210)(175, 211)(176, 212)(177,
213)(178, 214)(179, 215)(180, 216)(181, 217)(182, 218)(183, 219)(184, 220)(185,
221)(186, 222)(187, 223)(188, 224)(189, 225)(226, 238)(227, 239)(228, 240)(229,
241)(230, 242)(231, 243)(232, 235)(233, 236)(234, 237)
C4[ 243, 15 ]
243
-1 37 28 19 10
-2 161 206 130 120
-3 35 17 182 218
-4 146 191 159 204
-5 189 225 61 97
-6 198 211 153 175
-7 59 72 95 108
-8 209 39 173 21
-9 132 122 70 106
-10 1 46 19 64
-11 191 170 85 129
-12 110 26 216 53
-13 198 168 92 227
-14 34 214 117 142
-15 99 234 238 184
-16 81 140 162 32
-17 66 3 236 182
-18 79 160 87 131
-19 55 1 73 10
-20 121 84 227 107
-21 243 62 8 173
-22 234 137 105 206
-23 180 52 151 241
-24 144 112 222 204
-25 45 50 149 171
-26 110 220 12 75
-27 123 169 86 43
-28 1 100 37 82
-29 146 49 139 119
-30 44 89 180 74
-31 56 137 239 153
-32 178 81 16 164
-33 220 226 237 63
-34 14 171 117 207
-35 233 3 102 218
-36 121 115 51 205
-37 1 91 28 109
-38 48 71 239 131
-39 209 231 8 98
-40 69 168 237 161
-41 88 216 196 229
-42 166 159 76 186
-43 27 194 140 86
-44 111 30 74 184
-45 133 25 50 138
-46 154 118 64 10
-47 58 92 148 128
-48 189 125 38 71
-49 99 146 223 29
-50 187 45 101 25
-51 209 221 36 205
-52 23 180 192 108
-53 12 156 203 216
-54 178 190 60 130
-55 127 73 19 163
-56 137 83 94 31
-57 134 80 117 65
-58 144 47 212 92
-59 155 115 72 7
-60 210 190 236 54
-61 189 5 162 228
-62 165 243 21 197
-63 33 187 226 85
-64 46 136 172 10
-65 57 80 223 86
-66 143 201 236 17
-67 78 221 170 105
-68 199 232 243 124
-69 168 103 114 40
-70 122 149 9 230
-71 112 48 38 174
-72 88 59 147 7
-73 55 145 181 19
-74 44 122 212 30
-75 220 26 195 152
-76 210 159 107 42
-77 133 202 193 218
-78 67 177 157 105
-79 200 18 95 131
-80 57 183 65 175
-81 124 16 93 32
-82 100 199 28 128
-83 56 94 193 118
-84 135 225 107 20
-85 11 187 191 63
-86 223 27 43 65
-87 160 18 173 185
-88 147 72 216 41
-89 201 158 180 30
-90 145 214 96 120
-91 37 126 141 109
-92 13 47 58 168
-93 101 124 81 116
-94 176 56 166 83
-95 79 200 7 108
-96 90 145 233 174
-97 5 225 207 240
-98 143 231 39 152
-99 223 15 49 238
-100 167 82 28 208
-101 187 93 50 116
-102 165 35 156 233
-103 69 114 139 185
-104 154 231 134 235
-105 22 67 78 137
-106 132 242 194 9
-107 210 84 20 76
-108 192 7 95 52
-109 91 190 37 217
-110 132 176 12 26
-111 44 150 184 197
-112 24 71 204 174
-113 123 157 148 182
-114 69 103 202 213
-115 121 155 36 59
-116 101 211 93 219
-117 34 57 134 14
-118 154 46 83 193
-119 127 29 139 229
-120 2 90 214 161
-121 36 115 227 20
-122 212 70 74 9
-123 113 169 27 182
-124 243 68 81 93
-125 167 189 48 195
-126 91 129 141 241
-127 55 119 163 229
-128 199 47 82 148
-129 11 126 170 241
-130 2 178 206 54
-131 79 38 18 239
-132 110 176 106 9
-133 77 45 138 218
-134 231 57 104 117
-135 136 225 84 150
-136 135 150 172 64
-137 22 56 105 31
-138 45 133 155 179
-139 103 29 119 185
-140 16 194 162 43
-141 91 126 203 183
-142 14 224 192 214
-143 66 201 152 98
-144 24 222 58 212
-145 90 181 73 96
-146 4 49 159 29
-147 88 188 72 164
-148 47 113 157 128
-149 25 70 171 230
-150 111 135 136 197
-151 23 213 228 241
-152 143 195 75 98
-153 211 6 239 31
-154 46 235 104 118
-155 179 59 115 138
-156 165 102 203 53
-157 78 177 113 148
-158 89 201 163 219
-159 146 4 42 76
-160 18 217 87 230
-161 2 237 40 120
-162 16 61 140 228
-163 55 158 127 219
-164 188 178 147 32
-165 156 102 62 197
-166 176 94 42 186
-167 100 125 195 208
-168 13 69 92 40
-169 123 200 27 215
-170 11 67 221 129
-171 34 25 149 207
-172 136 215 226 64
-173 8 185 21 87
-174 112 233 71 96
-175 198 80 6 183
-176 110 132 166 94
-177 78 157 196 240
-178 130 32 54 164
-179 155 138 238 208
-180 23 89 30 52
-181 242 145 73 205
-182 123 3 113 17
-183 80 203 141 175
-184 44 111 234 15
-185 103 139 173 87
-186 166 232 224 42
-187 101 50 63 85
-188 222 147 235 164
-189 48 125 5 61
-190 60 217 54 109
-191 11 4 204 85
-192 224 52 108 142
-193 77 202 83 118
-194 242 106 140 43
-195 167 125 75 152
-196 177 41 229 240
-197 165 111 62 150
-198 13 6 227 175
-199 232 68 82 128
-200 79 169 215 95
-201 66 143 89 158
-202 77 114 213 193
-203 156 183 53 141
-204 24 112 4 191
-205 242 36 181 51
-206 22 2 234 130
-207 34 171 97 240
-208 100 167 179 238
-209 221 39 51 8
-210 60 236 107 76
-211 6 116 153 219
-212 122 144 58 74
-213 114 202 151 228
-214 90 14 120 142
-215 200 169 226 172
-216 88 12 41 53
-217 190 160 109 230
-218 77 133 35 3
-219 211 158 116 163
-220 33 26 237 75
-221 209 67 170 51
-222 144 188 24 235
-223 99 49 86 65
-224 232 192 142 186
-225 135 5 84 97
-226 33 215 172 63
-227 121 198 13 20
-228 213 61 151 162
-229 127 41 119 196
-230 70 149 160 217
-231 134 104 39 98
-232 199 68 224 186
-233 35 102 96 174
-234 22 15 184 206
-235 154 188 222 104
-236 66 210 60 17
-237 33 220 40 161
-238 99 179 15 208
-239 38 31 131 153
-240 177 97 196 207
-241 23 126 129 151
-242 181 106 194 205
-243 68 124 62 21
0