[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 17 ] =
UG(ATD[243,29]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {78, 79}, {116, 118}, {240, 242}, {169, 171}, {1, 2}, {41, 42},
{121, 122}, {40, 44}, {73, 77}, {1, 4}, {163, 166}, {162, 167}, {3, 6}, {114,
119}, {74, 76}, {2, 5}, {8, 15}, {3, 10}, {7, 14}, {5, 12}, {2, 9}, {164, 175},
{68, 79}, {32, 43}, {6, 13}, {115, 120}, {16, 30}, {17, 31}, {4, 11}, {227,
236}, {224, 239}, {101, 117}, {5, 20}, {225, 240}, {10, 24}, {15, 29}, {14, 28},
{11, 25}, {6, 21}, {199, 212}, {10, 30}, {230, 242}, {229, 241}, {196, 208},
{130, 150}, {131, 151}, {203, 222}, {228, 241}, {207, 218}, {12, 26}, {192,
214}, {72, 94}, {68, 82}, {13, 27}, {4, 19}, {7, 16}, {109, 122}, {141, 149},
{171, 179}, {32, 57}, {36, 61}, {34, 59}, {233, 243}, {33, 58}, {202, 209}, {37,
62}, {129, 157}, {167, 186}, {238, 243}, {8, 22}, {33, 63}, {9, 23}, {35, 60},
{163, 188}, {160, 191}, {134, 153}, {194, 226}, {201, 233}, {200, 232}, {197,
229}, {196, 228}, {195, 227}, {137, 168}, {210, 243}, {199, 230}, {198, 231},
{31, 61}, {193, 227}, {156, 190}, {143, 173}, {142, 172}, {68, 103}, {95, 124},
{12, 40}, {214, 242}, {64, 100}, {15, 43}, {14, 42}, {13, 41}, {67, 102}, {195,
230}, {94, 123}, {23, 48}, {69, 98}, {66, 101}, {31, 56}, {24, 49}, {68, 109},
{66, 107}, {64, 105}, {30, 55}, {28, 53}, {26, 51}, {25, 48}, {84, 126}, {25,
50}, {65, 106}, {29, 54}, {11, 39}, {22, 59}, {146, 191}, {144, 189}, {80, 125},
{82, 127}, {83, 125}, {9, 38}, {205, 226}, {145, 190}, {81, 126}, {67, 108},
{27, 52}, {21, 58}, {132, 180}, {16, 33}, {223, 238}, {208, 225}, {155, 170},
{154, 171}, {148, 165}, {141, 188}, {140, 189}, {74, 123}, {18, 32}, {219, 233},
{218, 232}, {137, 187}, {69, 119}, {28, 46}, {128, 178}, {129, 179}, {17, 34},
{221, 238}, {139, 184}, {73, 122}, {134, 178}, {222, 234}, {18, 36}, {219, 237},
{217, 239}, {9, 62}, {140, 187}, {75, 124}, {128, 184}, {210, 234}, {156, 164},
{129, 185}, {20, 45}, {22, 47}, {138, 176}, {215, 237}, {209, 235}, {21, 46},
{143, 180}, {208, 236}, {76, 113}, {138, 183}, {136, 181}, {77, 112}, {132,
185}, {70, 120}, {220, 226}, {71, 121}, {87, 105}, {19, 44}, {216, 231}, {158,
161}, {137, 182}, {70, 121}, {133, 186}, {44, 108}, {168, 232}, {165, 229},
{146, 210}, {52, 116}, {51, 115}, {50, 114}, {39, 102}, {54, 117}, {145, 212},
{181, 240}, {172, 234}, {40, 111}, {42, 109}, {39, 110}, {173, 228}, {135, 206},
{41, 99}, {38, 106}, {159, 211}, {58, 118}, {130, 206}, {131, 207}, {47, 97},
{157, 211}, {43, 100}, {166, 233}, {23, 71}, {144, 192}, {24, 72}, {27, 74},
{153, 200}, {151, 198}, {19, 65}, {30, 76}, {20, 70}, {26, 73}, {154, 201},
{152, 203}, {150, 197}, {147, 192}, {148, 193}, {150, 195}, {19, 69}, {156,
202}, {29, 75}, {63, 104}, {149, 194}, {147, 196}, {135, 208}, {136, 209}, {185,
224}, {178, 235}, {60, 102}, {60, 96}, {152, 196}, {63, 99}, {62, 98}, {61, 97},
{45, 112}, {189, 224}, {59, 101}, {130, 220}, {46, 113}, {190, 225}, {152, 199},
{56, 88}, {128, 225}, {34, 64}, {188, 222}, {185, 219}, {184, 218}, {49, 83},
{48, 82}, {42, 72}, {35, 65}, {57, 93}, {170, 206}, {168, 204}, {59, 95}, {58,
94}, {48, 85}, {182, 211}, {50, 87}, {36, 66}, {187, 221}, {186, 220}, {57, 95},
{37, 67}, {40, 79}, {55, 80}, {49, 86}, {38, 78}, {186, 210}, {45, 69}, {18,
123}, {176, 217}, {56, 81}, {53, 92}, {39, 78}, {191, 213}, {38, 77}, {180,
223}, {166, 205}, {164, 207}, {55, 92}, {51, 88}, {44, 71}, {183, 219}, {187,
215}, {52, 89}, {181, 216}, {54, 91}, {179, 221}, {18, 125}, {182, 217}, {176,
223}, {53, 90}, {131, 236}, {20, 102}, {21, 103}, {165, 214}, {177, 197}, {178,
198}, {10, 127}, {161, 212}, {61, 75}, {163, 213}, {162, 212}, {7, 112}, {175,
216}, {23, 96}, {134, 241}, {149, 237}, {41, 80}, {174, 215}, {3, 121}, {177,
203}, {157, 231}, {43, 81}, {47, 84}, {190, 197}, {183, 204}, {46, 83}, {181,
200}, {45, 82}, {182, 201}, {108, 236}, {87, 213}, {8, 139}, {8, 142}, {36,
172}, {37, 173}, {37, 174}, {63, 179}, {98, 238}, {96, 237}, {16, 159}, {67,
214}, {66, 213}, {106, 242}, {7, 155}, {3, 158}, {35, 189}, {65, 228}, {55,
145}, {31, 184}, {111, 198}, {64, 234}, {27, 183}, {28, 177}, {6, 169}, {14,
161}, {15, 191}, {120, 200}, {17, 160}, {104, 217}, {53, 135}, {86, 229}, {1,
180}, {89, 239}, {116, 194}, {117, 195}, {122, 204}, {123, 205}, {107, 220},
{22, 175}, {114, 203}, {93, 231}, {113, 202}, {84, 232}, {90, 230}, {124, 193},
{118, 201}, {1, 192}, {81, 144}, {47, 235}, {99, 166}, {111, 169}, {111, 168},
{110, 167}, {103, 170}, {126, 176}, {127, 177}, {78, 158}, {79, 159}, {126,
174}, {70, 151}, {88, 137}, {93, 140}, {124, 174}, {125, 175}, {4, 215}, {83,
128}, {72, 156}, {77, 153}, {73, 157}, {92, 136}, {26, 207}, {84, 129}, {86,
131}, {94, 139}, {24, 206}, {76, 154}, {118, 160}, {85, 130}, {92, 139}, {93,
138}, {51, 235}, {75, 147}, {74, 146}, {114, 170}, {115, 171}, {116, 172}, {117,
173}, {127, 167}, {112, 169}, {17, 202}, {95, 132}, {71, 155}, {88, 132}, {89,
133}, {90, 134}, {91, 135}, {13, 211}, {62, 224}, {86, 136}, {56, 216}, {2,
227}, {35, 193}, {57, 218}, {60, 223}, {110, 141}, {11, 239}, {96, 133}, {120,
159}, {54, 222}, {52, 221}, {85, 188}, {119, 158}, {25, 243}, {100, 143}, {33,
204}, {97, 140}, {99, 142}, {97, 143}, {34, 205}, {98, 141}, {50, 194}, {80,
160}, {100, 148}, {32, 209}, {119, 133}, {107, 152}, {5, 241}, {85, 161}, {87,
162}, {101, 144}, {108, 153}, {110, 155}, {49, 199}, {103, 145}, {109, 154},
{91, 162}, {115, 138}, {89, 163}, {104, 146}, {105, 147}, {12, 240}, {104, 149},
{106, 151}, {90, 164}, {91, 165}, {29, 226}, {105, 150}, {107, 148}, {113, 142}
}>;
(II) A more general form is to represent the graph as the orbit of {78, 79}
under the group generated by the following permutations:
a: (2, 4)(3, 7)(5, 11)(6, 14)(8, 18)(9, 19)(10, 16)(12, 25)(13, 28)(15, 32)(20,
39)(21, 42)(22, 36)(23, 44)(24, 33)(26, 50)(27, 53)(29, 57)(31, 34)(35, 37)(38,
69)(40, 48)(41, 46)(45, 78)(47, 66)(49, 63)(51, 87)(52, 90)(54, 93)(55, 76)(56,
64)(58, 72)(59, 61)(60, 67)(62, 65)(70, 110)(73, 114)(74, 92)(75, 95)(77,
119)(79, 82)(80, 113)(81, 100)(83, 99)(84, 107)(85, 111)(86, 104)(88, 105)(89,
134)(91, 138)(96, 108)(97, 101)(98, 106)(103, 109)(112, 158)(115, 162)(116,
164)(117, 140)(118, 156)(120, 167)(121, 155)(122, 170)(123, 139)(125, 142)(126,
148)(127, 159)(128, 166)(129, 152)(130, 168)(131, 149)(132, 147)(133, 153)(135,
183)(136, 146)(137, 150)(141, 151)(143, 144)(145, 154)(157, 203)(160, 202)(161,
169)(163, 178)(165, 176)(171, 212)(172, 175)(173, 189)(174, 193)(177, 211)(179,
199)(180, 192)(181, 210)(182, 197)(184, 205)(185, 196)(186, 200)(187, 195)(188,
198)(190, 201)(191, 209)(194, 207)(204, 206)(208, 219)(213, 235)(214, 223)(215,
227)(216, 234)(217, 229)(218, 226)(220, 232)(221, 230)(222, 231)(224, 228)(225,
233)(236, 237)(238, 242)(239, 241)(240, 243) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 192, 180, 4)(3, 49, 18, 27)(5, 147, 132, 11)(6, 24, 125, 74)(7, 53, 8,
63)(9, 214, 143, 215)(10, 83, 123, 13)(12, 105, 88, 25)(14, 92, 142, 33)(15,
179, 155, 90)(16, 28, 139, 99)(17, 201, 68, 190)(19, 227, 144, 223)(20, 196, 95,
239)(21, 72, 80, 76)(22, 104, 112, 135)(23, 242, 100, 187)(26, 87, 51, 50)(29,
129, 110, 134)(30, 46, 94, 41)(31, 233, 79, 197)(32, 52, 121, 199)(34, 182, 82,
225)(36, 183, 158, 86)(38, 165, 97, 237)(39, 241, 75, 185)(40, 150, 56, 243)(42,
55, 113, 58)(43, 221, 71, 230)(44, 195, 81, 238)(45, 208, 59, 217)(47, 149, 77,
91)(48, 240, 64, 137)(54, 84, 141, 153)(57, 89, 70, 152)(60, 65, 193, 189)(61,
219, 78, 229)(62, 67, 173, 174)(66, 138, 119, 131)(69, 236, 101, 176)(73, 162,
235, 194)(85, 181, 234, 168)(93, 133, 151, 107)(96, 106, 148, 140)(98, 108, 117,
126)(102, 228, 124, 224)(103, 156, 160, 154)(109, 145, 202, 118)(111, 130, 216,
210)(114, 207, 213, 115)(116, 122, 212, 209)(120, 203, 218, 163)(127, 128, 205,
211)(136, 172, 204, 161)(146, 169, 206, 175)(157, 167, 178, 226)(159, 177, 184,
166)(164, 191, 171, 170)(186, 198, 220, 231)(188, 200, 222, 232)
c: (1, 2, 5, 12, 26, 51, 88, 132, 180)(3, 6, 13, 27, 52, 89, 133, 119, 158)(4,
9, 20, 40, 73, 115, 137, 185, 223)(7, 16, 33, 63, 104, 149, 141, 110, 155)(8,
15, 29, 54, 91, 135, 53, 92, 139)(10, 21, 41, 74, 116, 163, 186, 114, 161)(11,
23, 45, 79, 122, 171, 182, 219, 238)(14, 30, 58, 99, 146, 194, 188, 167,
170)(17, 34, 64, 105, 150, 197, 190, 156, 202)(18, 36, 66, 107, 152, 199, 49,
83, 125)(19, 38, 70, 111, 157, 138, 187, 224, 60)(22, 43, 75, 117, 165, 208, 90,
136, 184)(24, 46, 80, 123, 172, 213, 220, 203, 212)(25, 48, 82, 68, 109, 154,
201, 233, 243)(28, 55, 94, 142, 191, 226, 222, 162, 206)(31, 59, 100, 147, 195,
229, 225, 164, 209)(32, 61, 101, 148, 196, 230, 86, 128, 175)(35, 65, 106, 151,
198, 231, 93, 140, 189)(37, 67, 108, 153, 200, 232, 84, 126, 174)(39, 71, 112,
159, 204, 179, 217, 237, 98)(42, 76, 118, 166, 210, 50, 85, 127, 103)(44, 77,
120, 168, 129, 176, 215, 62, 102)(47, 81, 124, 173, 214, 236, 134, 181, 218)(56,
95, 143, 192, 227, 241, 240, 207, 235)(57, 97, 144, 193, 228, 242, 131, 178,
216)(69, 78, 121, 169, 211, 183, 221, 239, 96)(72, 113, 160, 205, 234, 87, 130,
177, 145)
C4[ 243, 17 ]
243
-1 2 4 180 192
-2 1 5 227 9
-3 121 158 6 10
-4 11 1 215 19
-5 12 2 20 241
-6 13 3 169 21
-7 155 112 14 16
-8 22 15 139 142
-9 23 2 38 62
-10 24 3 127 30
-11 25 4 39 239
-12 26 5 40 240
-13 211 27 6 41
-14 28 7 161 42
-15 191 29 8 43
-16 33 159 7 30
-17 34 202 160 31
-18 123 36 125 32
-19 44 69 4 65
-20 45 102 70 5
-21 46 58 103 6
-22 47 59 8 175
-23 48 71 96 9
-24 49 72 206 10
-25 11 243 48 50
-26 12 51 73 207
-27 13 183 52 74
-28 177 46 14 53
-29 15 226 75 54
-30 55 16 10 76
-31 56 17 61 184
-32 209 57 18 43
-33 58 16 204 63
-34 59 17 205 64
-35 189 60 193 65
-36 66 61 18 172
-37 67 62 173 174
-38 77 78 106 9
-39 11 110 78 102
-40 44 12 111 79
-41 99 13 80 42
-42 14 72 41 109
-43 100 15 81 32
-44 71 40 19 108
-45 112 69 82 20
-46 113 28 83 21
-47 22 235 84 97
-48 23 25 82 85
-49 199 24 83 86
-50 25 114 194 87
-51 88 26 235 115
-52 89 221 27 116
-53 90 135 92 28
-54 222 91 29 117
-55 145 80 92 30
-56 88 81 216 31
-57 93 95 218 32
-58 33 94 118 21
-59 22 34 101 95
-60 35 102 223 96
-61 36 31 75 97
-62 37 224 9 98
-63 33 99 179 104
-64 34 100 234 105
-65 35 106 19 228
-66 101 36 213 107
-67 102 37 214 108
-68 79 103 82 109
-69 45 19 119 98
-70 121 151 20 120
-71 44 121 23 155
-72 24 156 94 42
-73 77 122 157 26
-74 123 146 27 76
-75 124 147 61 29
-76 154 113 30 74
-77 112 38 73 153
-78 79 158 38 39
-79 78 68 159 40
-80 55 125 160 41
-81 56 144 126 43
-82 45 68 48 127
-83 46 125 49 128
-84 232 47 126 129
-85 188 48 161 130
-86 136 49 229 131
-87 213 50 105 162
-88 132 56 137 51
-89 133 52 239 163
-90 134 53 164 230
-91 165 135 162 54
-92 55 136 139 53
-93 231 57 138 140
-94 123 58 72 139
-95 132 57 124 59
-96 23 133 60 237
-97 143 47 61 140
-98 69 62 238 141
-99 166 41 63 142
-100 143 148 64 43
-101 66 144 59 117
-102 67 60 39 20
-103 68 145 170 21
-104 146 149 63 217
-105 147 150 64 87
-106 242 38 151 65
-107 66 220 148 152
-108 44 67 236 153
-109 154 122 68 42
-110 155 167 39 141
-111 198 168 169 40
-112 77 45 169 7
-113 46 202 76 142
-114 170 203 50 119
-115 138 171 51 120
-116 172 194 52 118
-117 101 173 195 54
-118 58 201 116 160
-119 133 69 114 158
-120 200 70 115 159
-121 122 3 70 71
-122 121 204 73 109
-123 94 18 205 74
-124 193 95 75 174
-125 80 83 18 175
-126 176 81 84 174
-127 177 167 82 10
-128 178 225 83 184
-129 157 179 84 185
-130 220 150 85 206
-131 236 151 86 207
-132 88 180 95 185
-133 89 96 119 186
-134 90 178 153 241
-135 91 206 53 208
-136 209 92 181 86
-137 88 187 168 182
-138 176 93 115 183
-139 92 94 8 184
-140 187 189 93 97
-141 110 188 149 98
-142 99 113 172 8
-143 100 180 173 97
-144 101 189 81 192
-145 55 190 212 103
-146 210 191 104 74
-147 192 105 75 196
-148 165 100 193 107
-149 104 237 194 141
-150 105 195 130 197
-151 198 70 106 131
-152 199 203 107 196
-153 77 134 200 108
-154 201 171 76 109
-155 110 71 170 7
-156 190 202 72 164
-157 231 211 73 129
-158 78 3 161 119
-159 79 211 16 120
-160 80 191 17 118
-161 14 212 158 85
-162 167 91 212 87
-163 89 166 188 213
-164 90 156 207 175
-165 91 148 214 229
-166 99 233 205 163
-167 110 127 162 186
-168 111 232 137 204
-169 111 112 6 171
-170 155 103 114 206
-171 154 179 169 115
-172 36 234 116 142
-173 143 37 117 228
-174 124 37 126 215
-175 22 125 216 164
-176 223 126 138 217
-177 203 28 127 197
-178 198 134 235 128
-179 221 171 63 129
-180 132 143 1 223
-181 200 136 216 240
-182 211 201 137 217
-183 27 138 204 219
-184 128 139 31 218
-185 132 224 129 219
-186 220 133 210 167
-187 221 137 215 140
-188 222 85 141 163
-189 144 35 224 140
-190 145 156 225 197
-191 146 15 213 160
-192 1 144 147 214
-193 35 124 148 227
-194 226 149 116 50
-195 117 150 227 230
-196 147 228 152 208
-197 177 190 150 229
-198 231 111 178 151
-199 212 49 152 230
-200 232 181 120 153
-201 154 233 182 118
-202 209 156 113 17
-203 177 222 114 152
-204 33 122 168 183
-205 34 166 123 226
-206 24 135 170 130
-207 26 218 131 164
-208 135 225 236 196
-209 136 202 235 32
-210 243 146 234 186
-211 13 157 159 182
-212 199 145 161 162
-213 66 191 163 87
-214 165 242 67 192
-215 187 4 237 174
-216 231 56 181 175
-217 176 104 182 239
-218 232 57 184 207
-219 233 237 183 185
-220 226 107 130 186
-221 187 179 238 52
-222 188 234 203 54
-223 176 180 60 238
-224 189 62 239 185
-225 190 128 240 208
-226 220 29 194 205
-227 2 236 193 195
-228 173 196 65 241
-229 165 86 197 241
-230 242 199 90 195
-231 198 157 93 216
-232 200 168 84 218
-233 166 243 201 219
-234 210 222 172 64
-235 209 178 47 51
-236 227 108 131 208
-237 149 215 96 219
-238 221 243 223 98
-239 11 89 224 217
-240 242 12 181 225
-241 134 5 228 229
-242 214 106 240 230
-243 210 233 25 238
0