C4graphGraph forms for C4 [ 243, 21 ] = UG(ATD[243,38])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 243, 21 ] = UG(ATD[243,38]).

(I) Following is a form readable by MAGMA:

g:=Graph<243|{ {18, 19}, {94, 95}, {1, 2}, {52, 55}, {1, 5}, {3, 7}, {2, 6}, {177, 180}, {210, 215}, {120, 126}, {211, 213}, {177, 183}, {128, 135}, {209, 214}, {162, 165}, {160, 168}, {100, 109}, {195, 202}, {179, 185}, {199, 205}, {98, 105}, {192, 203}, {4, 8}, {196, 200}, {2, 15}, {225, 236}, {197, 200}, {38, 43}, {116, 121}, {54, 56}, {166, 182}, {13, 28}, {224, 241}, {101, 119}, {3, 16}, {12, 31}, {11, 24}, {7, 20}, {67, 87}, {4, 17}, {167, 178}, {14, 27}, {12, 25}, {6, 19}, {35, 53}, {229, 243}, {228, 242}, {5, 18}, {13, 26}, {3, 27}, {66, 91}, {96, 122}, {8, 21}, {46, 51}, {10, 23}, {107, 118}, {15, 17}, {203, 213}, {161, 191}, {9, 22}, {200, 215}, {171, 180}, {108, 115}, {77, 109}, {210, 242}, {206, 238}, {75, 106}, {197, 228}, {152, 185}, {28, 62}, {211, 241}, {89, 123}, {24, 59}, {19, 55}, {16, 53}, {151, 178}, {25, 60}, {25, 63}, {207, 233}, {201, 239}, {90, 124}, {17, 54}, {26, 61}, {22, 49}, {5, 45}, {205, 229}, {155, 179}, {133, 173}, {7, 47}, {6, 46}, {134, 175}, {26, 48}, {76, 102}, {9, 34}, {158, 181}, {74, 97}, {10, 38}, {220, 240}, {156, 176}, {21, 56}, {222, 243}, {193, 236}, {153, 180}, {23, 58}, {131, 174}, {64, 110}, {150, 184}, {22, 57}, {194, 237}, {31, 47}, {28, 45}, {154, 171}, {65, 112}, {31, 46}, {82, 99}, {84, 101}, {11, 57}, {223, 237}, {136, 186}, {65, 115}, {64, 114}, {131, 176}, {217, 234}, {142, 189}, {218, 238}, {219, 239}, {139, 190}, {20, 35}, {157, 170}, {86, 97}, {8, 48}, {11, 50}, {80, 105}, {85, 108}, {84, 110}, {150, 172}, {85, 111}, {10, 49}, {15, 52}, {76, 112}, {204, 240}, {14, 51}, {159, 161}, {144, 175}, {212, 235}, {32, 96}, {170, 234}, {33, 97}, {62, 127}, {149, 212}, {61, 127}, {155, 217}, {12, 79}, {153, 218}, {150, 213}, {156, 217}, {9, 78}, {159, 216}, {44, 100}, {132, 204}, {13, 68}, {164, 237}, {55, 126}, {48, 122}, {171, 225}, {49, 123}, {156, 215}, {165, 238}, {162, 233}, {29, 81}, {30, 83}, {155, 214}, {148, 217}, {53, 120}, {11, 69}, {174, 224}, {63, 113}, {51, 125}, {50, 124}, {139, 196}, {149, 218}, {147, 220}, {144, 223}, {141, 194}, {133, 213}, {184, 232}, {32, 113}, {177, 224}, {176, 225}, {36, 117}, {34, 115}, {33, 114}, {52, 103}, {129, 212}, {131, 214}, {46, 120}, {189, 235}, {166, 240}, {47, 121}, {35, 116}, {181, 226}, {39, 127}, {145, 201}, {56, 96}, {9, 80}, {151, 206}, {45, 119}, {56, 98}, {130, 216}, {183, 236}, {14, 82}, {186, 230}, {138, 214}, {43, 119}, {42, 118}, {129, 221}, {29, 64}, {190, 227}, {158, 195}, {146, 207}, {142, 211}, {140, 209}, {134, 219}, {31, 66}, {185, 231}, {30, 65}, {141, 210}, {160, 192}, {10, 107}, {136, 233}, {59, 90}, {29, 126}, {58, 89}, {44, 79}, {40, 75}, {36, 71}, {32, 67}, {42, 78}, {33, 68}, {174, 203}, {163, 198}, {41, 76}, {40, 77}, {35, 70}, {15, 105}, {58, 92}, {128, 230}, {34, 69}, {143, 232}, {60, 91}, {138, 226}, {169, 193}, {12, 103}, {176, 219}, {27, 112}, {132, 232}, {134, 234}, {37, 72}, {39, 74}, {135, 233}, {137, 231}, {38, 73}, {191, 208}, {37, 85}, {172, 220}, {42, 90}, {151, 230}, {173, 220}, {63, 77}, {39, 84}, {172, 223}, {167, 212}, {148, 231}, {144, 227}, {41, 90}, {168, 221}, {19, 101}, {24, 111}, {178, 197}, {169, 222}, {152, 239}, {20, 108}, {21, 109}, {18, 107}, {41, 80}, {23, 110}, {7, 125}, {171, 209}, {157, 231}, {16, 106}, {145, 234}, {188, 199}, {147, 232}, {146, 238}, {36, 91}, {153, 230}, {1, 129}, {60, 190}, {66, 192}, {61, 191}, {38, 165}, {69, 198}, {102, 229}, {57, 188}, {71, 194}, {68, 193}, {30, 152}, {59, 189}, {86, 208}, {88, 222}, {50, 186}, {75, 195}, {48, 185}, {111, 229}, {49, 186}, {62, 181}, {43, 167}, {72, 196}, {78, 195}, {52, 187}, {93, 210}, {39, 182}, {81, 192}, {1, 147}, {86, 196}, {4, 145}, {68, 209}, {117, 224}, {103, 241}, {114, 228}, {47, 184}, {55, 160}, {122, 226}, {121, 227}, {32, 187}, {45, 182}, {89, 197}, {51, 173}, {40, 183}, {82, 205}, {79, 237}, {99, 193}, {124, 222}, {36, 128}, {71, 227}, {3, 166}, {16, 181}, {125, 216}, {110, 200}, {111, 201}, {123, 221}, {37, 130}, {50, 149}, {119, 208}, {74, 226}, {44, 133}, {4, 174}, {104, 194}, {34, 137}, {108, 199}, {17, 189}, {107, 198}, {33, 143}, {105, 198}, {37, 148}, {24, 170}, {116, 205}, {118, 207}, {30, 164}, {53, 143}, {40, 146}, {112, 202}, {113, 203}, {25, 162}, {80, 235}, {117, 206}, {124, 199}, {58, 135}, {78, 243}, {29, 163}, {114, 204}, {54, 137}, {63, 128}, {67, 131}, {26, 219}, {64, 129}, {70, 132}, {81, 147}, {73, 139}, {71, 133}, {98, 160}, {102, 164}, {65, 130}, {75, 136}, {72, 141}, {76, 137}, {85, 144}, {93, 152}, {95, 154}, {99, 166}, {74, 140}, {87, 145}, {88, 158}, {100, 162}, {101, 163}, {126, 184}, {23, 208}, {77, 138}, {83, 148}, {94, 153}, {102, 175}, {104, 161}, {70, 140}, {88, 146}, {103, 173}, {92, 151}, {89, 149}, {127, 179}, {91, 150}, {104, 165}, {122, 183}, {72, 134}, {73, 135}, {120, 182}, {61, 242}, {28, 204}, {79, 159}, {2, 211}, {14, 223}, {92, 141}, {118, 167}, {62, 236}, {95, 138}, {100, 177}, {73, 159}, {82, 132}, {106, 188}, {109, 187}, {95, 136}, {83, 139}, {116, 172}, {123, 163}, {22, 207}, {54, 239}, {43, 242}, {87, 142}, {115, 170}, {125, 164}, {13, 215}, {104, 178}, {84, 143}, {20, 202}, {67, 157}, {81, 142}, {41, 201}, {5, 228}, {44, 206}, {92, 190}, {94, 188}, {21, 241}, {60, 216}, {86, 179}, {59, 221}, {106, 140}, {27, 243}, {8, 225}, {113, 154}, {83, 191}, {88, 180}, {69, 168}, {70, 169}, {117, 154}, {42, 218}, {93, 175}, {57, 202}, {6, 240}, {94, 169}, {18, 235}, {66, 187}, {96, 155}, {121, 130}, {93, 161}, {97, 156}, {99, 158}, {87, 168}, {98, 157} }>;

(II) A more general form is to represent the graph as the orbit of {18, 19} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 31)(11, 35)(12, 38)(14, 42)(15, 45)(16, 34)(17, 28)(20, 57)(21, 61)(23, 66)(24, 70)(25, 73)(27, 78)(30, 40)(32, 86)(33, 87)(36, 92)(37, 95)(39, 98)(41, 99)(43, 103)(44, 104)(46, 107)(47, 49)(50, 116)(51, 118)(52, 119)(53, 69)(54, 62)(55, 101)(56, 127)(58, 91)(59, 132)(60, 135)(63, 139)(64, 81)(65, 75)(67, 97)(68, 145)(71, 151)(72, 154)(74, 157)(76, 158)(77, 83)(79, 165)(80, 166)(82, 90)(84, 160)(85, 94)(88, 102)(89, 150)(93, 177)(96, 179)(100, 161)(105, 182)(106, 115)(108, 188)(109, 191)(110, 192)(111, 169)(112, 195)(113, 196)(114, 142)(117, 141)(120, 198)(121, 186)(122, 185)(123, 184)(124, 205)(125, 207)(126, 163)(128, 190)(129, 147)(130, 136)(131, 156)(133, 178)(134, 171)(137, 181)(138, 148)(140, 170)(143, 168)(144, 153)(146, 164)(149, 172)(152, 183)(159, 162)(167, 173)(174, 215)(175, 180)(187, 208)(189, 204)(193, 201)(194, 206)(197, 213)(200, 203)(209, 234)(210, 224)(211, 228)(212, 220)(214, 217)(216, 233)(218, 223)(219, 225)(221, 232)(222, 229)(226, 231)(227, 230)(235, 240)(236, 239)(237, 238)(241, 242)
b: (1, 2, 211, 241, 224, 177, 180, 88, 222, 243, 229, 102, 175, 93, 210, 242, 228, 5)(3, 24, 125, 234, 159, 156, 38, 33, 107, 232, 105, 150, 56, 36, 122, 230, 181, 50)(4, 44, 225, 238, 193, 42, 82, 41, 223, 239, 194, 26, 178, 28, 212, 240, 189, 173)(6, 142, 103, 174, 100, 171, 146, 169, 78, 205, 76, 144, 152, 141, 61, 197, 45, 129)(7, 170, 216, 217, 73, 97, 10, 143, 198, 184, 98, 91, 96, 128, 226, 186, 16, 11)(8, 206, 236, 218, 99, 90, 14, 201, 237, 219, 104, 13, 167, 204, 235, 220, 17, 133)(9, 116, 137, 227, 185, 92, 127, 89, 182, 221, 46, 87, 12, 131, 162, 209, 207, 70)(15, 213, 21, 117, 183, 153, 158, 124, 27, 111, 164, 134, 161, 215, 43, 114, 18, 147)(19, 81, 52, 203, 109, 154, 40, 94, 195, 199, 112, 85, 30, 72, 191, 200, 119, 64)(20, 115, 130, 148, 139, 86, 23, 84, 163, 126, 160, 66, 32, 63, 138, 136, 106, 57)(22, 35, 34, 121, 231, 190, 179, 58, 39, 123, 120, 168, 31, 67, 25, 214, 233, 140)(29, 55, 192, 187, 113, 77, 95, 75, 188, 202, 108, 65, 37, 83, 196, 208, 110, 101)(47, 157, 60, 155, 135, 74, 49, 53, 69)(48, 151, 62, 149, 166, 59, 51, 145, 79, 176, 165, 68, 118, 132, 80, 172, 54, 71)
c: (2, 147)(3, 67)(4, 82)(5, 129)(6, 81)(7, 32)(8, 205)(9, 97)(10, 23)(11, 127)(12, 91)(13, 90)(14, 174)(15, 232)(16, 157)(17, 132)(18, 64)(19, 29)(20, 96)(21, 116)(22, 86)(24, 62)(25, 60)(26, 124)(27, 131)(28, 59)(30, 95)(31, 66)(33, 80)(34, 74)(35, 56)(36, 79)(37, 40)(38, 58)(39, 69)(41, 68)(42, 215)(43, 89)(44, 71)(45, 221)(46, 192)(47, 187)(48, 199)(49, 208)(50, 61)(51, 203)(52, 184)(53, 98)(54, 70)(55, 126)(57, 179)(63, 216)(65, 138)(72, 146)(73, 135)(75, 148)(76, 209)(77, 130)(78, 156)(83, 136)(84, 198)(85, 183)(87, 166)(88, 134)(92, 165)(93, 153)(94, 152)(99, 145)(100, 227)(101, 163)(102, 171)(103, 150)(104, 151)(105, 143)(106, 231)(107, 110)(108, 122)(109, 121)(111, 236)(112, 214)(113, 125)(114, 235)(115, 226)(117, 237)(118, 200)(119, 123)(120, 160)(128, 159)(137, 140)(139, 233)(141, 238)(142, 240)(144, 177)(149, 242)(154, 164)(155, 202)(158, 234)(161, 230)(162, 190)(167, 197)(168, 182)(169, 239)(170, 181)(172, 241)(173, 213)(175, 180)(176, 243)(185, 188)(186, 191)(189, 204)(193, 201)(194, 206)(195, 217)(196, 207)(210, 218)(211, 220)(212, 228)(219, 222)(223, 224)(225, 229)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 243, 21 ]
243
-1 2 147 5 129
-2 1 211 15 6
-3 166 16 27 7
-4 145 17 8 174
-5 1 45 18 228
-6 2 46 19 240
-7 3 47 125 20
-8 4 48 225 21
-9 22 34 78 80
-10 23 38 49 107
-11 24 57 69 50
-12 79 25 103 31
-13 68 26 28 215
-14 223 27 82 51
-15 2 17 105 52
-16 3 181 106 53
-17 189 4 15 54
-18 235 5 19 107
-19 55 101 6 18
-20 35 202 7 108
-21 56 8 109 241
-22 57 49 9 207
-23 110 58 10 208
-24 11 111 59 170
-25 12 60 63 162
-26 13 48 61 219
-27 243 112 3 14
-28 45 13 204 62
-29 81 126 64 163
-30 83 152 65 164
-31 66 12 46 47
-32 187 67 113 96
-33 143 68 114 97
-34 69 115 137 9
-35 70 116 20 53
-36 91 71 117 128
-37 148 72 85 130
-38 165 73 10 43
-39 127 182 84 74
-40 77 146 183 75
-41 90 80 201 76
-42 78 90 118 218
-43 242 167 38 119
-44 100 133 79 206
-45 5 28 182 119
-46 6 51 31 120
-47 121 7 184 31
-48 122 26 8 185
-49 22 123 10 186
-50 11 124 149 186
-51 46 14 125 173
-52 55 187 15 103
-53 143 35 16 120
-54 56 137 17 239
-55 126 160 19 52
-56 96 21 54 98
-57 11 22 188 202
-58 23 89 135 92
-59 221 24 90 189
-60 25 91 190 216
-61 242 26 191 127
-62 181 236 28 127
-63 77 25 113 128
-64 110 114 29 129
-65 112 115 30 130
-66 187 91 192 31
-67 157 32 87 131
-68 33 209 13 193
-69 11 198 34 168
-70 132 35 169 140
-71 133 36 194 227
-72 134 37 141 196
-73 135 38 159 139
-74 39 226 140 97
-75 136 40 106 195
-76 112 102 137 41
-77 138 40 63 109
-78 243 195 9 42
-79 44 12 159 237
-80 235 105 41 9
-81 147 192 29 142
-82 99 132 14 205
-83 191 148 139 30
-84 110 143 101 39
-85 111 144 37 108
-86 179 97 196 208
-87 67 145 168 142
-88 222 146 158 180
-89 123 58 149 197
-90 124 59 41 42
-91 66 36 60 150
-92 58 190 151 141
-93 210 161 152 175
-94 188 169 95 153
-95 154 136 94 138
-96 56 122 155 32
-97 33 156 74 86
-98 56 157 105 160
-99 166 158 82 193
-100 44 177 162 109
-101 84 19 119 163
-102 229 76 164 175
-103 12 52 173 241
-104 165 178 161 194
-105 198 80 15 98
-106 188 16 140 75
-107 198 18 118 10
-108 199 115 85 20
-109 77 187 100 21
-110 23 200 84 64
-111 24 201 85 229
-112 202 27 65 76
-113 154 203 63 32
-114 33 204 228 64
-115 34 170 108 65
-116 121 35 172 205
-117 154 36 224 206
-118 167 107 42 207
-119 45 101 43 208
-120 46 126 182 53
-121 47 116 227 130
-122 48 226 183 96
-123 89 221 49 163
-124 199 90 222 50
-125 7 51 216 164
-126 55 29 184 120
-127 179 39 61 62
-128 36 135 63 230
-129 1 221 212 64
-130 121 37 216 65
-131 176 67 214 174
-132 232 70 82 204
-133 44 213 71 173
-134 234 72 175 219
-135 233 58 73 128
-136 233 95 75 186
-137 231 34 54 76
-138 77 214 226 95
-139 190 83 73 196
-140 209 70 106 74
-141 210 92 72 194
-142 189 211 81 87
-143 33 232 84 53
-144 223 227 85 175
-145 201 234 4 87
-146 88 40 238 207
-147 220 1 232 81
-148 231 37 83 217
-149 89 212 50 218
-150 91 213 172 184
-151 178 92 206 230
-152 93 30 239 185
-153 180 94 218 230
-154 113 171 95 117
-155 179 214 96 217
-156 176 215 217 97
-157 231 67 170 98
-158 88 99 181 195
-159 79 73 161 216
-160 55 168 192 98
-161 191 93 104 159
-162 165 100 233 25
-163 198 101 123 29
-164 102 125 237 30
-165 38 104 238 162
-166 99 3 182 240
-167 178 212 118 43
-168 221 69 160 87
-169 222 70 94 193
-170 24 157 234 115
-171 154 209 180 225
-172 220 223 116 150
-173 220 133 103 51
-174 4 224 203 131
-175 144 134 102 93
-176 156 225 131 219
-177 100 180 224 183
-178 167 104 151 197
-179 155 127 86 185
-180 88 177 171 153
-181 158 16 226 62
-182 45 166 39 120
-183 122 177 236 40
-184 232 47 126 150
-185 231 179 48 152
-186 136 49 50 230
-187 66 52 32 109
-188 199 57 94 106
-189 59 235 17 142
-190 92 60 139 227
-191 61 83 161 208
-192 66 81 203 160
-193 99 68 169 236
-194 71 104 237 141
-195 78 158 202 75
-196 200 72 139 86
-197 89 178 200 228
-198 69 105 107 163
-199 188 124 205 108
-200 110 215 196 197
-201 111 145 41 239
-202 57 112 195 20
-203 113 213 192 174
-204 132 114 28 240
-205 199 82 116 229
-206 44 117 238 151
-207 22 233 146 118
-208 23 191 86 119
-209 68 214 171 140
-210 242 93 215 141
-211 2 213 142 241
-212 167 235 149 129
-213 133 211 203 150
-214 209 155 138 131
-215 210 13 156 200
-216 125 60 159 130
-217 155 156 234 148
-218 149 238 42 153
-219 176 134 26 239
-220 147 172 173 240
-221 123 168 59 129
-222 88 243 124 169
-223 144 14 237 172
-224 177 117 174 241
-225 176 236 171 8
-226 122 181 138 74
-227 121 144 190 71
-228 242 114 5 197
-229 111 243 102 205
-230 128 151 153 186
-231 157 137 148 185
-232 132 143 147 184
-233 135 136 162 207
-234 134 145 170 217
-235 189 80 212 18
-236 225 193 62 183
-237 79 223 194 164
-238 165 146 206 218
-239 201 152 54 219
-240 220 166 6 204
-241 211 103 224 21
-242 210 61 228 43
-243 78 222 27 229
0

**************