[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 22 ] =
UG(ATD[243,40]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {172, 173}, {73, 75}, {144, 146}, {1, 2}, {233, 234}, {201, 202},
{1, 5}, {179, 183}, {153, 157}, {3, 7}, {2, 6}, {121, 124}, {200, 205}, {155,
158}, {138, 143}, {82, 84}, {187, 189}, {154, 156}, {154, 157}, {226, 229},
{184, 191}, {84, 92}, {208, 216}, {182, 190}, {18, 27}, {103, 110}, {118, 127},
{145, 155}, {209, 219}, {197, 206}, {228, 239}, {210, 217}, {2, 14}, {4, 8}, {3,
15}, {52, 57}, {230, 235}, {102, 104}, {227, 237}, {208, 222}, {6, 9}, {19, 28},
{69, 85}, {202, 218}, {72, 88}, {77, 92}, {141, 156}, {79, 94}, {3, 17}, {9,
26}, {33, 50}, {11, 24}, {4, 16}, {203, 223}, {68, 80}, {5, 17}, {7, 18}, {204,
217}, {198, 211}, {192, 213}, {40, 61}, {13, 24}, {12, 25}, {69, 83}, {143,
153}, {97, 118}, {194, 213}, {14, 23}, {143, 150}, {134, 159}, {73, 80}, {32,
58}, {33, 59}, {8, 19}, {205, 214}, {68, 95}, {39, 60}, {36, 63}, {12, 23}, {33,
61}, {9, 20}, {35, 62}, {11, 22}, {34, 60}, {140, 146}, {10, 21}, {32, 63}, {6,
39}, {200, 233}, {199, 230}, {194, 227}, {31, 62}, {11, 42}, {128, 161}, {14,
44}, {201, 235}, {197, 231}, {15, 45}, {81, 115}, {5, 38}, {10, 41}, {86, 117},
{30, 58}, {138, 174}, {11, 46}, {212, 241}, {64, 101}, {23, 50}, {21, 48}, {13,
43}, {195, 229}, {140, 170}, {31, 57}, {30, 56}, {93, 123}, {10, 45}, {214,
241}, {203, 236}, {72, 111}, {22, 49}, {69, 109}, {219, 243}, {218, 242}, {204,
228}, {133, 173}, {70, 110}, {25, 51}, {29, 55}, {28, 54}, {7, 44}, {193, 234},
{159, 180}, {31, 51}, {195, 238}, {8, 38}, {221, 243}, {220, 242}, {27, 53},
{26, 52}, {7, 40}, {223, 240}, {143, 160}, {67, 108}, {83, 99}, {222, 238},
{150, 166}, {139, 187}, {140, 189}, {72, 122}, {76, 126}, {73, 123}, {77, 127},
{130, 176}, {141, 190}, {27, 47}, {67, 119}, {66, 118}, {65, 117}, {154, 175},
{74, 124}, {147, 165}, {75, 125}, {76, 116}, {158, 166}, {77, 117}, {136, 177},
{157, 164}, {79, 117}, {150, 172}, {20, 47}, {215, 236}, {78, 114}, {129, 189},
{94, 99}, {16, 46}, {71, 121}, {70, 120}, {78, 113}, {152, 167}, {35, 99}, {170,
234}, {43, 107}, {42, 106}, {41, 105}, {36, 100}, {24, 89}, {161, 224}, {132,
197}, {39, 102}, {25, 91}, {133, 199}, {32, 98}, {38, 101}, {139, 200}, {128,
195}, {148, 209}, {165, 224}, {130, 196}, {174, 232}, {167, 225}, {152, 222},
{150, 208}, {142, 201}, {175, 232}, {162, 229}, {155, 220}, {56, 112}, {169,
225}, {57, 113}, {59, 114}, {170, 227}, {61, 116}, {168, 226}, {173, 231}, {16,
91}, {32, 107}, {20, 95}, {22, 90}, {17, 92}, {171, 230}, {19, 94}, {31, 81},
{38, 104}, {18, 93}, {191, 240}, {171, 228}, {146, 221}, {137, 198}, {60, 115},
{40, 103}, {131, 211}, {145, 193}, {144, 192}, {43, 122}, {148, 197}, {131,
210}, {160, 242}, {190, 236}, {188, 239}, {151, 195}, {15, 90}, {151, 194}, {62,
104}, {14, 89}, {185, 238}, {153, 206}, {26, 66}, {148, 204}, {147, 203}, {55,
111}, {54, 110}, {53, 109}, {52, 108}, {28, 68}, {27, 67}, {50, 107}, {61, 100},
{29, 71}, {149, 207}, {182, 237}, {176, 236}, {145, 204}, {147, 205}, {29, 66},
{57, 89}, {181, 213}, {142, 238}, {33, 64}, {184, 217}, {166, 196}, {34, 65},
{138, 233}, {136, 235}, {137, 237}, {37, 64}, {1, 105}, {177, 216}, {60, 87},
{164, 207}, {163, 211}, {20, 101}, {37, 84}, {21, 103}, {179, 193}, {18, 102},
{30, 106}, {21, 96}, {146, 231}, {48, 69}, {156, 234}, {49, 70}, {135, 240},
{134, 241}, {4, 125}, {168, 209}, {180, 206}, {172, 215}, {187, 199}, {188,
192}, {162, 223}, {22, 104}, {30, 97}, {55, 181}, {48, 179}, {42, 174}, {49,
180}, {53, 176}, {73, 207}, {54, 177}, {43, 163}, {58, 178}, {47, 167}, {46,
166}, {45, 165}, {44, 164}, {40, 161}, {85, 223}, {3, 136}, {41, 162}, {109,
224}, {105, 231}, {111, 225}, {1, 142}, {56, 183}, {9, 134}, {71, 215}, {112,
225}, {45, 186}, {48, 168}, {49, 169}, {122, 227}, {56, 162}, {28, 135}, {58,
161}, {55, 171}, {116, 232}, {13, 144}, {52, 169}, {47, 178}, {125, 224}, {87,
201}, {53, 170}, {101, 196}, {59, 152}, {108, 207}, {59, 159}, {121, 221}, {99,
198}, {120, 222}, {113, 216}, {120, 209}, {125, 212}, {63, 149}, {66, 232},
{110, 196}, {44, 135}, {97, 202}, {119, 220}, {15, 163}, {112, 220}, {51, 157},
{65, 239}, {64, 240}, {98, 210}, {39, 149}, {54, 132}, {42, 152}, {103, 213},
{107, 216}, {2, 182}, {37, 145}, {35, 151}, {86, 226}, {96, 212}, {111, 219},
{126, 202}, {34, 151}, {108, 217}, {63, 137}, {123, 205}, {109, 218}, {36, 156},
{106, 211}, {123, 192}, {4, 184}, {126, 194}, {106, 215}, {124, 193}, {105,
214}, {46, 239}, {82, 144}, {25, 218}, {72, 139}, {91, 159}, {88, 158}, {113,
183}, {120, 190}, {121, 191}, {12, 203}, {114, 181}, {67, 139}, {71, 142}, {76,
133}, {74, 131}, {115, 186}, {23, 221}, {70, 140}, {12, 199}, {74, 129}, {119,
188}, {86, 155}, {116, 185}, {118, 187}, {76, 130}, {78, 128}, {79, 129}, {77,
130}, {85, 154}, {87, 135}, {88, 136}, {81, 131}, {29, 206}, {85, 134}, {115,
160}, {62, 235}, {81, 132}, {124, 169}, {96, 182}, {114, 164}, {36, 243}, {16,
200}, {74, 147}, {83, 138}, {93, 132}, {97, 184}, {126, 167}, {10, 208}, {78,
148}, {87, 141}, {122, 160}, {127, 165}, {50, 233}, {82, 137}, {98, 185}, {26,
198}, {51, 237}, {100, 186}, {75, 171}, {5, 228}, {19, 242}, {17, 243}, {65,
163}, {95, 189}, {79, 172}, {6, 226}, {96, 133}, {88, 191}, {102, 129}, {24,
241}, {80, 186}, {90, 176}, {91, 177}, {94, 180}, {95, 181}, {127, 149}, {13,
230}, {68, 175}, {89, 178}, {8, 229}, {90, 183}, {92, 178}, {93, 179}, {83,
188}, {75, 185}, {37, 214}, {35, 212}, {119, 128}, {34, 219}, {86, 175}, {82,
168}, {84, 174}, {100, 158}, {41, 210}, {98, 153}, {80, 173}, {112, 141}
}>;
(II) A more general form is to represent the graph as the orbit of {172, 173}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 12)(6, 17)(7, 20)(8, 23)(10, 29)(11, 31)(13, 35)(14, 38)(15,
26)(16, 25)(18, 47)(19, 50)(21, 55)(22, 57)(24, 62)(28, 33)(30, 74)(32, 79)(34,
82)(36, 86)(37, 87)(39, 92)(40, 95)(41, 71)(42, 81)(43, 99)(44, 101)(45, 66)(46,
51)(48, 111)(49, 113)(52, 90)(53, 67)(54, 59)(56, 124)(58, 129)(60, 84)(61,
68)(63, 117)(64, 135)(65, 137)(69, 72)(70, 78)(73, 76)(75, 133)(77, 149)(80,
116)(83, 122)(85, 88)(89, 104)(93, 167)(94, 107)(96, 171)(97, 147)(98, 172)(100,
175)(102, 178)(103, 181)(105, 142)(106, 131)(108, 176)(109, 139)(110, 114)(112,
193)(115, 174)(118, 165)(119, 170)(120, 148)(121, 162)(123, 126)(125, 199)(128,
140)(130, 207)(132, 152)(134, 136)(138, 160)(141, 145)(144, 151)(146, 195)(150,
153)(154, 158)(155, 156)(157, 166)(159, 177)(161, 189)(163, 198)(164, 196)(168,
219)(169, 183)(173, 185)(179, 225)(180, 216)(182, 228)(184, 203)(186, 232)(187,
224)(188, 227)(190, 204)(191, 223)(192, 194)(197, 222)(200, 218)(201, 214)(202,
205)(206, 208)(210, 215)(212, 230)(217, 236)(220, 234)(221, 229)(226, 243)(231,
238)(233, 242)(235, 241)(237, 239) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 142)(3, 10)(4, 144)(5, 105)(6, 71)(7, 208)(8, 146)(9, 29)(11, 73)(12,
151)(13, 125)(14, 238)(15, 45)(16, 192)(17, 41)(18, 150)(19, 140)(20, 206)(21,
136)(22, 80)(23, 195)(24, 75)(25, 194)(26, 66)(27, 143)(28, 70)(30, 63)(31,
76)(32, 58)(33, 78)(34, 203)(35, 199)(36, 56)(37, 204)(38, 231)(39, 215)(40,
216)(42, 207)(43, 224)(44, 222)(46, 123)(47, 153)(48, 88)(49, 68)(50, 128)(51,
126)(52, 232)(53, 160)(54, 110)(55, 134)(57, 116)(59, 114)(60, 236)(61, 113)(62,
133)(64, 148)(65, 147)(67, 138)(69, 72)(74, 117)(77, 131)(79, 129)(81, 130)(82,
184)(83, 139)(84, 217)(85, 111)(86, 124)(87, 190)(89, 185)(90, 186)(91, 213)(92,
210)(93, 166)(94, 189)(95, 180)(96, 235)(97, 137)(98, 178)(99, 187)(100,
183)(101, 197)(102, 172)(103, 177)(104, 173)(106, 149)(107, 161)(108, 174)(109,
122)(112, 156)(115, 176)(118, 198)(119, 233)(120, 135)(121, 226)(127, 211)(132,
196)(152, 164)(154, 225)(155, 193)(157, 167)(158, 179)(159, 181)(162, 243)(163,
165)(168, 191)(169, 175)(170, 242)(171, 241)(182, 201)(188, 200)(202, 237)(205,
239)(209, 240)(212, 230)(214, 228)(218, 227)(219, 223)(220, 234)(221, 229)
c: (1, 2, 6, 9, 26, 66, 29, 71, 142)(3, 7, 18, 27, 67, 139, 72, 88, 136)(4, 13,
36, 28, 22, 58, 73, 140, 112)(5, 14, 39, 20, 52, 118, 55, 121, 201)(8, 24, 63,
68, 49, 30, 75, 146, 141)(10, 21, 48, 69, 83, 138, 143, 150, 208)(11, 32, 80,
70, 56, 125, 144, 156, 19)(12, 34, 64, 31, 77, 114, 74, 126, 204)(15, 40, 93,
53, 119, 200, 122, 158, 177)(16, 43, 100, 54, 90, 161, 123, 170, 220)(17, 44,
102, 47, 108, 187, 111, 191, 235)(23, 60, 101, 57, 127, 181, 124, 202, 228)(25,
65, 33, 81, 130, 78, 147, 194, 145)(35, 84, 157, 79, 152, 210, 133, 209,
223)(37, 51, 117, 59, 131, 76, 148, 203, 151)(38, 89, 149, 95, 169, 97, 171,
221, 87)(41, 96, 168, 85, 99, 174, 153, 172, 222)(42, 98, 173, 120, 162, 212,
82, 154, 94)(45, 103, 179, 109, 188, 233, 160, 166, 216)(46, 107, 186, 110, 183,
224, 192, 234, 242)(50, 115, 196, 113, 165, 213, 193, 218, 239)(61, 132, 176,
128, 205, 227, 155, 91, 163)(62, 92, 164, 129, 167, 217, 199, 219, 240)(86, 159,
211, 116, 197, 236, 195, 214, 237)(104, 178, 207, 189, 225, 184, 230, 243,
135)(105, 182, 226, 134, 198, 232, 206, 215, 238)(106, 185, 231, 190, 229, 241,
137, 175, 180)
C4[ 243, 22 ]
243
-1 2 5 105 142
-2 1 14 6 182
-3 15 136 17 7
-4 125 16 8 184
-5 1 38 17 228
-6 2 39 226 9
-7 44 3 18 40
-8 4 38 19 229
-9 134 26 6 20
-10 45 41 21 208
-11 22 24 46 42
-12 23 199 25 203
-13 144 24 43 230
-14 44 23 89 2
-15 45 90 3 163
-16 46 200 91 4
-17 243 3 92 5
-18 102 27 93 7
-19 242 28 94 8
-20 101 47 95 9
-21 48 103 96 10
-22 11 90 49 104
-23 12 221 14 50
-24 11 89 13 241
-25 12 91 51 218
-26 66 198 52 9
-27 67 47 18 53
-28 68 135 19 54
-29 55 66 71 206
-30 56 58 106 97
-31 57 81 51 62
-32 58 63 107 98
-33 59 50 61 64
-34 60 151 65 219
-35 99 212 62 151
-36 100 243 156 63
-37 145 214 84 64
-38 101 5 104 8
-39 102 60 6 149
-40 103 61 7 161
-41 210 105 162 10
-42 11 106 152 174
-43 122 13 107 163
-44 14 135 7 164
-45 165 15 10 186
-46 11 166 16 239
-47 167 178 27 20
-48 69 168 179 21
-49 22 70 169 180
-50 33 23 233 107
-51 25 157 237 31
-52 57 26 169 108
-53 176 27 170 109
-54 110 132 177 28
-55 111 181 171 29
-56 112 183 30 162
-57 89 113 52 31
-58 178 161 30 32
-59 33 114 159 152
-60 34 115 39 87
-61 33 100 116 40
-62 35 235 104 31
-63 36 137 149 32
-64 33 101 37 240
-65 34 117 239 163
-66 232 26 29 118
-67 27 139 108 119
-68 80 28 95 175
-69 48 83 85 109
-70 110 49 140 120
-71 121 215 29 142
-72 88 111 122 139
-73 123 80 75 207
-74 124 147 129 131
-75 125 171 73 185
-76 133 126 116 130
-77 92 127 117 130
-78 113 114 148 128
-79 94 117 172 129
-80 68 73 173 186
-81 132 115 31 131
-82 144 168 137 84
-83 99 188 69 138
-84 37 92 82 174
-85 154 134 69 223
-86 155 226 117 175
-87 135 201 60 141
-88 136 158 191 72
-89 24 57 178 14
-90 22 176 15 183
-91 177 25 16 159
-92 77 178 17 84
-93 132 123 179 18
-94 99 79 180 19
-95 68 189 181 20
-96 133 212 182 21
-97 202 30 118 184
-98 210 185 32 153
-99 198 35 83 94
-100 36 158 61 186
-101 38 20 64 196
-102 104 39 18 129
-103 110 213 40 21
-104 22 102 38 62
-105 231 1 214 41
-106 211 215 30 42
-107 50 216 32 43
-108 67 52 217 207
-109 69 224 53 218
-110 70 103 196 54
-111 55 225 72 219
-112 220 56 225 141
-113 78 57 183 216
-114 78 59 181 164
-115 81 60 160 186
-116 232 61 185 76
-117 77 79 86 65
-118 66 187 127 97
-119 220 67 188 128
-120 209 222 190 70
-121 221 124 191 71
-122 72 160 227 43
-123 93 192 73 205
-124 121 169 193 74
-125 212 4 224 75
-126 167 202 194 76
-127 77 165 149 118
-128 78 161 195 119
-129 79 189 102 74
-130 77 176 196 76
-131 210 211 81 74
-132 81 93 54 197
-133 199 96 173 76
-134 159 85 9 241
-135 44 28 240 87
-136 88 177 3 235
-137 198 82 237 63
-138 143 233 83 174
-139 187 67 200 72
-140 189 146 70 170
-141 112 156 190 87
-142 1 201 71 238
-143 138 160 150 153
-144 13 146 82 192
-145 155 37 193 204
-146 231 144 221 140
-147 165 203 205 74
-148 209 78 204 197
-149 39 127 63 207
-150 143 166 172 208
-151 34 35 194 195
-152 167 222 59 42
-153 143 157 206 98
-154 156 157 85 175
-155 220 145 158 86
-156 154 36 234 141
-157 154 51 153 164
-158 88 100 155 166
-159 134 91 59 180
-160 143 242 122 115
-161 58 224 40 128
-162 56 223 41 229
-163 211 15 43 65
-164 44 157 114 207
-165 45 147 224 127
-166 46 158 150 196
-167 47 126 225 152
-168 209 48 82 226
-169 124 49 225 52
-170 234 227 140 53
-171 55 228 75 230
-172 79 215 150 173
-173 231 133 80 172
-174 232 138 84 42
-175 154 232 68 86
-176 90 236 53 130
-177 91 136 216 54
-178 89 47 58 92
-179 48 93 193 183
-180 49 159 94 206
-181 55 114 213 95
-182 2 190 237 96
-183 56 90 113 179
-184 4 191 217 97
-185 116 238 75 98
-186 45 100 80 115
-187 199 189 139 118
-188 192 83 239 119
-189 187 95 129 140
-190 236 182 141 120
-191 88 121 184 240
-192 144 188 123 213
-193 145 124 179 234
-194 213 126 227 151
-195 128 238 151 229
-196 110 166 101 130
-197 132 231 148 206
-198 99 211 26 137
-199 187 12 133 230
-200 233 16 139 205
-201 202 235 87 142
-202 201 126 97 218
-203 12 223 147 236
-204 145 148 217 228
-205 123 200 147 214
-206 180 29 153 197
-207 149 73 108 164
-208 222 150 216 10
-209 168 148 120 219
-210 41 217 98 131
-211 198 106 163 131
-212 35 125 96 241
-213 103 181 192 194
-214 37 105 205 241
-215 71 236 106 172
-216 177 113 107 208
-217 210 204 184 108
-218 242 25 202 109
-219 209 34 111 243
-220 242 155 112 119
-221 121 23 243 146
-222 238 152 120 208
-223 203 85 162 240
-224 165 125 161 109
-225 111 112 167 169
-226 168 6 86 229
-227 122 170 237 194
-228 5 171 204 239
-229 226 8 162 195
-230 199 13 235 171
-231 146 105 173 197
-232 66 116 174 175
-233 200 234 50 138
-234 156 233 170 193
-235 201 136 62 230
-236 176 190 203 215
-237 137 182 51 227
-238 222 195 185 142
-239 188 46 228 65
-240 135 223 191 64
-241 24 134 212 214
-242 220 160 19 218
-243 221 36 17 219
0