[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 23 ] =
UG(ATD[243,42]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {12, 13}, {234, 235}, {232, 233}, {216, 217}, {204, 205}, {188,
189}, {186, 187}, {152, 153}, {60, 61}, {124, 125}, {126, 127}, {134, 135}, {32,
34}, {217, 219}, {117, 119}, {128, 130}, {1, 2}, {237, 238}, {197, 198}, {72,
75}, {65, 66}, {29, 30}, {136, 139}, {1, 5}, {226, 230}, {3, 7}, {2, 6}, {72,
77}, {33, 39}, {233, 239}, {67, 68}, {195, 196}, {115, 116}, {123, 124}, {5,
12}, {209, 216}, {166, 175}, {19, 26}, {135, 141}, {231, 237}, {18, 25}, {227,
232}, {213, 222}, {182, 189}, {2, 14}, {4, 8}, {3, 15}, {134, 138}, {48, 61},
{71, 74}, {131, 142}, {130, 140}, {224, 238}, {196, 202}, {6, 9}, {199, 200},
{9, 24}, {192, 209}, {173, 188}, {129, 144}, {3, 17}, {225, 243}, {15, 29}, {13,
31}, {96, 114}, {100, 118}, {130, 145}, {199, 212}, {4, 16}, {171, 191}, {67,
87}, {47, 59}, {46, 58}, {5, 17}, {7, 18}, {34, 55}, {102, 115}, {97, 119},
{192, 214}, {172, 186}, {65, 86}, {203, 211}, {13, 23}, {200, 210}, {141, 151},
{128, 154}, {8, 19}, {160, 187}, {66, 89}, {68, 88}, {205, 209}, {73, 85}, {2,
31}, {238, 243}, {194, 223}, {11, 22}, {9, 20}, {10, 21}, {193, 222}, {35, 60},
{1, 33}, {25, 57}, {24, 56}, {10, 43}, {6, 36}, {193, 227}, {159, 189}, {151,
181}, {64, 98}, {7, 37}, {90, 120}, {11, 40}, {196, 231}, {154, 185}, {27, 56},
{134, 165}, {13, 41}, {194, 230}, {15, 43}, {14, 42}, {27, 62}, {75, 110}, {5,
35}, {201, 239}, {194, 228}, {74, 108}, {140, 170}, {11, 44}, {147, 180}, {23,
48}, {20, 60}, {217, 241}, {66, 106}, {30, 54}, {24, 48}, {92, 116}, {24, 49},
{64, 105}, {28, 53}, {26, 51}, {81, 123}, {144, 186}, {25, 50}, {219, 240},
{207, 228}, {149, 190}, {82, 126}, {223, 243}, {203, 231}, {7, 42}, {204, 225},
{146, 191}, {80, 125}, {10, 39}, {8, 38}, {198, 232}, {14, 32}, {27, 52}, {68,
107}, {64, 112}, {222, 238}, {16, 33}, {218, 235}, {143, 190}, {142, 188}, {131,
176}, {220, 239}, {154, 169}, {25, 45}, {30, 42}, {29, 41}, {148, 162}, {221,
235}, {158, 168}, {78, 118}, {17, 40}, {76, 117}, {22, 47}, {20, 45}, {214,
236}, {21, 46}, {214, 237}, {140, 183}, {16, 44}, {26, 36}, {82, 108}, {77,
115}, {138, 180}, {139, 181}, {211, 236}, {138, 202}, {139, 203}, {50, 115},
{14, 76}, {175, 237}, {171, 233}, {15, 77}, {138, 200}, {6, 69}, {179, 240},
{178, 241}, {177, 242}, {165, 230}, {164, 231}, {143, 204}, {62, 125}, {23, 84},
{19, 80}, {49, 117}, {161, 229}, {20, 81}, {183, 242}, {163, 230}, {51, 118},
{22, 83}, {172, 234}, {1, 70}, {167, 224}, {63, 120}, {28, 91}, {21, 82}, {30,
86}, {173, 229}, {148, 220}, {45, 101}, {28, 85}, {18, 88}, {163, 233}, {58,
113}, {21, 89}, {22, 90}, {4, 73}, {31, 82}, {8, 70}, {164, 234}, {153, 215},
{52, 123}, {136, 199}, {63, 111}, {132, 213}, {150, 197}, {177, 226}, {36, 112},
{183, 227}, {182, 226}, {181, 225}, {180, 224}, {53, 96}, {55, 97}, {149, 195},
{57, 111}, {63, 104}, {152, 207}, {140, 212}, {3, 90}, {62, 103}, {56, 97}, {56,
98}, {156, 198}, {57, 99}, {61, 102}, {135, 220}, {145, 205}, {184, 228}, {157,
193}, {18, 79}, {149, 200}, {133, 216}, {16, 78}, {187, 229}, {175, 241}, {174,
240}, {59, 101}, {58, 100}, {51, 109}, {132, 219}, {152, 199}, {41, 73}, {63,
95}, {174, 204}, {35, 71}, {183, 211}, {57, 92}, {184, 221}, {59, 94}, {37, 67},
{162, 196}, {39, 65}, {34, 69}, {181, 210}, {167, 192}, {58, 93}, {54, 92},
{129, 235}, {52, 95}, {128, 236}, {182, 218}, {49, 92}, {61, 80}, {51, 94}, {38,
72}, {187, 213}, {50, 93}, {178, 221}, {176, 223}, {170, 218}, {174, 222}, {173,
223}, {177, 195}, {40, 91}, {185, 202}, {59, 79}, {34, 87}, {179, 198}, {168,
221}, {153, 239}, {180, 194}, {155, 236}, {178, 197}, {62, 70}, {44, 86}, {36,
88}, {38, 90}, {37, 89}, {143, 242}, {43, 85}, {190, 192}, {9, 118}, {83, 211},
{4, 133}, {85, 212}, {81, 210}, {12, 137}, {97, 228}, {123, 243}, {93, 212},
{43, 165}, {94, 206}, {84, 197}, {17, 131}, {23, 133}, {11, 158}, {126, 232},
{10, 157}, {69, 210}, {19, 132}, {86, 206}, {12, 150}, {48, 170}, {76, 208},
{125, 227}, {78, 209}, {117, 234}, {55, 150}, {52, 150}, {64, 226}, {53, 151},
{109, 201}, {26, 191}, {106, 207}, {50, 149}, {53, 157}, {54, 158}, {38, 143},
{37, 142}, {104, 195}, {35, 141}, {55, 153}, {54, 152}, {99, 205}, {103, 201},
{65, 241}, {127, 206}, {100, 214}, {106, 216}, {107, 217}, {47, 156}, {67, 240},
{46, 155}, {96, 213}, {31, 169}, {108, 218}, {109, 219}, {39, 144}, {121, 193},
{40, 145}, {49, 136}, {89, 224}, {105, 208}, {91, 225}, {41, 146}, {73, 242},
{47, 148}, {45, 145}, {96, 220}, {107, 215}, {27, 166}, {46, 147}, {110, 208},
{104, 215}, {121, 184}, {99, 160}, {122, 185}, {101, 161}, {103, 162}, {71,
129}, {78, 136}, {111, 168}, {74, 131}, {108, 165}, {110, 167}, {113, 184}, {29,
215}, {84, 158}, {77, 135}, {76, 134}, {106, 160}, {122, 176}, {66, 137}, {104,
163}, {109, 166}, {80, 156}, {105, 164}, {124, 177}, {127, 178}, {83, 157}, {75,
132}, {105, 166}, {74, 154}, {102, 182}, {70, 151}, {81, 128}, {113, 160}, {83,
129}, {91, 137}, {122, 168}, {28, 207}, {114, 161}, {79, 155}, {124, 169}, {68,
146}, {84, 130}, {69, 147}, {101, 179}, {120, 174}, {121, 175}, {112, 167},
{116, 172}, {60, 229}, {102, 191}, {112, 169}, {114, 171}, {119, 173}, {120,
162}, {121, 163}, {71, 156}, {75, 144}, {113, 170}, {87, 137}, {100, 186}, {122,
164}, {99, 188}, {42, 202}, {110, 142}, {116, 148}, {114, 147}, {127, 155}, {88,
190}, {44, 203}, {98, 133}, {32, 201}, {95, 179}, {103, 139}, {126, 146}, {32,
206}, {95, 176}, {111, 159}, {33, 208}, {94, 172}, {107, 159}, {72, 189}, {79,
185}, {87, 161}, {93, 171}, {119, 141}, {98, 159} }>;
(II) A more general form is to represent the graph as the orbit of {12, 13}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(6, 17)(7, 20)(8, 16)(10, 27)(11, 26)(12, 31)(14, 35)(15, 24)(18,
45)(19, 44)(21, 52)(22, 51)(23, 41)(28, 64)(29, 48)(30, 61)(32, 71)(33, 70)(34,
74)(36, 40)(37, 81)(38, 78)(39, 62)(42, 60)(43, 56)(46, 95)(47, 94)(49, 77)(50,
57)(53, 105)(54, 102)(55, 108)(58, 63)(65, 125)(66, 124)(67, 128)(68, 130)(69,
131)(72, 136)(73, 133)(75, 139)(76, 141)(79, 101)(80, 86)(82, 150)(83, 109)(84,
146)(85, 98)(87, 154)(88, 145)(89, 123)(90, 118)(91, 112)(92, 115)(93, 111)(96,
164)(97, 165)(99, 149)(100, 120)(103, 144)(104, 113)(106, 177)(107, 140)(110,
181)(114, 122)(117, 135)(119, 134)(126, 197)(127, 198)(129, 201)(132, 203)(137,
169)(138, 173)(142, 210)(143, 209)(147, 176)(148, 172)(151, 208)(152, 182)(153,
218)(155, 179)(156, 206)(157, 166)(158, 191)(159, 212)(160, 195)(161, 185)(162,
186)(163, 184)(167, 225)(168, 171)(170, 215)(174, 214)(175, 193)(178, 232)(180,
223)(183, 217)(187, 196)(188, 200)(189, 199)(190, 205)(192, 204)(202, 229)(207,
226)(211, 219)(213, 231)(216, 242)(220, 234)(221, 233)(222, 237)(224, 243)(227,
241)(228, 230)(235, 239)(236, 240) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 70)(4, 76)(6, 62)(7, 90)(8, 14)(9, 27)(11, 142)(12, 35)(13, 141)(16,
208)(18, 120)(19, 32)(20, 52)(21, 157)(22, 37)(23, 119)(24, 56)(25, 63)(26,
201)(28, 108)(29, 77)(30, 72)(31, 151)(34, 80)(36, 103)(38, 42)(40, 131)(41,
135)(44, 110)(45, 95)(46, 193)(47, 67)(48, 97)(49, 98)(50, 104)(51, 109)(53,
82)(54, 189)(55, 61)(57, 111)(58, 121)(59, 240)(60, 150)(64, 136)(65, 144)(66,
129)(68, 148)(69, 125)(71, 137)(73, 134)(74, 91)(75, 86)(78, 105)(79, 174)(81,
123)(83, 89)(84, 173)(85, 165)(87, 156)(88, 162)(92, 159)(93, 163)(94, 219)(96,
126)(99, 168)(100, 175)(101, 179)(102, 153)(106, 235)(107, 116)(112, 139)(113,
184)(114, 232)(115, 215)(117, 133)(118, 166)(122, 205)(124, 210)(127, 213)(128,
243)(130, 223)(132, 206)(138, 242)(140, 194)(143, 202)(145, 176)(146, 220)(147,
227)(149, 195)(152, 182)(154, 225)(155, 222)(158, 188)(160, 221)(161, 198)(164,
209)(167, 203)(169, 181)(170, 228)(171, 233)(172, 217)(177, 200)(178, 187)(180,
183)(185, 204)(186, 241)(190, 196)(191, 239)(192, 231)(197, 229)(199, 226)(207,
218)(211, 224)(212, 230)(214, 237)(216, 234)(236, 238)
c: (1, 2)(3, 7)(4, 112)(5, 14)(6, 70)(8, 36)(9, 62)(10, 21)(11, 185)(12, 76)(13,
208)(15, 37)(16, 169)(17, 42)(18, 90)(19, 26)(20, 103)(22, 79)(23, 105)(24,
27)(25, 120)(28, 180)(29, 142)(30, 131)(31, 33)(32, 35)(34, 141)(38, 88)(39,
82)(40, 202)(41, 110)(43, 89)(44, 154)(45, 162)(46, 157)(47, 59)(48, 166)(49,
52)(50, 174)(51, 80)(53, 147)(54, 176)(55, 119)(57, 63)(58, 193)(60, 201)(61,
109)(64, 133)(65, 108)(66, 165)(67, 77)(68, 72)(69, 151)(71, 206)(73, 167)(74,
86)(75, 146)(78, 124)(81, 139)(83, 155)(84, 164)(85, 224)(87, 135)(91, 138)(92,
95)(93, 222)(94, 156)(96, 114)(99, 104)(100, 227)(101, 148)(102, 219)(106,
230)(107, 189)(113, 121)(115, 240)(116, 179)(117, 150)(118, 125)(122, 158)(123,
136)(126, 144)(127, 129)(128, 203)(130, 231)(132, 191)(134, 137)(140, 237)(143,
190)(145, 196)(149, 204)(152, 223)(153, 173)(160, 163)(161, 220)(170, 175)(171,
213)(172, 198)(177, 209)(178, 235)(181, 210)(182, 217)(183, 214)(186, 232)(187,
233)(188, 215)(192, 242)(194, 207)(195, 205)(197, 234)(199, 243)(200, 225)(211,
236)(212, 238)(216, 226)(218, 241)(229, 239)
C4[ 243, 23 ]
243
-1 33 2 70 5
-2 1 14 6 31
-3 90 15 17 7
-4 133 16 73 8
-5 1 12 35 17
-6 2 36 69 9
-7 3 37 18 42
-8 4 70 38 19
-9 24 6 118 20
-10 157 39 21 43
-11 22 44 158 40
-12 13 5 137 150
-13 12 23 41 31
-14 2 42 32 76
-15 77 3 29 43
-16 33 44 78 4
-17 3 5 40 131
-18 88 79 25 7
-19 132 80 26 8
-20 45 81 60 9
-21 89 46 82 10
-22 11 90 47 83
-23 133 13 48 84
-24 56 48 49 9
-25 45 57 50 18
-26 36 191 51 19
-27 56 166 62 52
-28 91 85 53 207
-29 15 215 30 41
-30 29 42 86 54
-31 2 13 169 82
-32 34 14 201 206
-33 1 16 39 208
-34 55 69 32 87
-35 5 60 71 141
-36 88 112 26 6
-37 67 89 7 142
-38 143 90 72 8
-39 33 144 10 65
-40 11 145 91 17
-41 13 146 29 73
-42 14 202 7 30
-43 165 15 85 10
-44 11 16 203 86
-45 101 145 25 20
-46 155 58 147 21
-47 22 156 59 148
-48 23 24 170 61
-49 24 92 136 117
-50 25 93 115 149
-51 26 94 118 109
-52 123 27 95 150
-53 157 28 96 151
-54 92 158 30 152
-55 34 150 97 153
-56 24 27 97 98
-57 99 111 25 92
-58 100 46 113 93
-59 79 101 47 94
-60 35 61 20 229
-61 80 102 48 60
-62 70 103 125 27
-63 111 104 95 120
-64 112 105 226 98
-65 66 39 86 241
-66 89 137 106 65
-67 68 37 240 87
-68 88 67 146 107
-69 34 210 147 6
-70 1 62 8 151
-71 35 156 74 129
-72 77 189 38 75
-73 242 4 41 85
-74 154 71 108 131
-75 110 132 144 72
-76 134 14 117 208
-77 135 15 115 72
-78 209 136 16 118
-79 155 59 18 185
-80 156 125 61 19
-81 210 123 128 20
-82 126 31 108 21
-83 22 211 157 129
-84 23 158 130 197
-85 212 28 73 43
-86 44 30 206 65
-87 34 67 137 161
-88 68 36 190 18
-89 66 37 224 21
-90 22 3 38 120
-91 137 225 28 40
-92 57 49 116 54
-93 58 212 50 171
-94 59 51 172 206
-95 176 179 52 63
-96 220 114 213 53
-97 55 56 228 119
-98 56 133 159 64
-99 188 57 160 205
-100 58 214 118 186
-101 45 179 59 161
-102 191 115 61 182
-103 201 62 139 162
-104 215 63 195 163
-105 166 64 164 208
-106 66 160 216 207
-107 68 159 215 217
-108 165 82 74 218
-109 166 201 51 219
-110 167 75 142 208
-111 57 168 159 63
-112 167 36 169 64
-113 58 170 160 184
-114 147 171 161 96
-115 77 102 50 116
-116 92 115 148 172
-117 234 49 119 76
-118 78 100 51 9
-119 117 173 97 141
-120 90 63 162 174
-121 193 184 163 175
-122 176 168 185 164
-123 243 124 81 52
-124 177 123 125 169
-125 80 124 62 227
-126 232 146 82 127
-127 155 178 126 206
-128 154 81 236 130
-129 144 235 71 83
-130 145 84 128 140
-131 176 17 74 142
-132 213 19 75 219
-133 23 4 216 98
-134 165 135 138 76
-135 77 220 134 141
-136 78 199 49 139
-137 66 12 91 87
-138 134 200 180 202
-139 103 136 181 203
-140 212 170 183 130
-141 35 135 151 119
-142 110 188 37 131
-143 242 190 38 204
-144 39 129 75 186
-145 45 40 205 130
-146 68 191 126 41
-147 46 69 114 180
-148 220 47 116 162
-149 200 190 50 195
-150 55 12 52 197
-151 70 181 53 141
-152 199 207 54 153
-153 55 215 239 152
-154 169 128 74 185
-155 46 79 236 127
-156 198 47 80 71
-157 83 193 53 10
-158 11 168 84 54
-159 111 189 107 98
-160 99 187 113 106
-161 101 114 229 87
-162 103 148 196 120
-163 121 233 104 230
-164 231 122 234 105
-165 134 108 43 230
-166 27 105 109 175
-167 110 112 224 192
-168 111 122 221 158
-169 154 112 124 31
-170 113 48 140 218
-171 233 114 191 93
-172 234 94 116 186
-173 188 223 119 229
-174 222 204 240 120
-175 121 166 237 241
-176 122 223 95 131
-177 242 124 226 195
-178 221 127 197 241
-179 198 101 95 240
-180 147 224 138 194
-181 210 225 139 151
-182 189 102 226 218
-183 242 211 227 140
-184 121 221 113 228
-185 154 122 79 202
-186 187 100 144 172
-187 213 160 229 186
-188 99 189 173 142
-189 188 159 72 182
-190 88 143 192 149
-191 102 146 26 171
-192 209 167 190 214
-193 121 222 157 227
-194 223 180 228 230
-195 177 104 149 196
-196 231 202 162 195
-197 198 178 84 150
-198 232 156 179 197
-199 200 212 136 152
-200 199 210 138 149
-201 103 239 32 109
-202 138 42 185 196
-203 44 231 211 139
-204 143 225 205 174
-205 99 209 145 204
-206 94 127 86 32
-207 28 106 228 152
-208 33 110 105 76
-209 78 192 205 216
-210 200 69 81 181
-211 203 236 83 183
-212 199 93 85 140
-213 132 187 222 96
-214 100 192 236 237
-215 104 29 107 153
-216 209 133 106 217
-217 216 107 219 241
-218 235 170 182 108
-219 132 217 240 109
-220 135 148 96 239
-221 178 168 235 184
-222 213 193 238 174
-223 176 243 194 173
-224 89 167 180 238
-225 243 91 181 204
-226 177 182 64 230
-227 232 125 193 183
-228 194 184 97 207
-229 187 60 161 173
-230 165 226 194 163
-231 203 237 196 164
-232 198 233 126 227
-233 232 171 239 163
-234 235 117 172 164
-235 221 234 129 218
-236 155 211 214 128
-237 231 214 238 175
-238 243 222 224 237
-239 220 233 201 153
-240 67 179 174 219
-241 178 217 65 175
-242 143 177 73 183
-243 123 223 225 238
0