[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 24 ] =
UG(ATD[243,43]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {18, 19}, {200, 201}, {30, 31}, {16, 18}, {41, 43}, {28, 30}, {1,
2}, {153, 154}, {52, 55}, {13, 14}, {1, 5}, {49, 53}, {48, 52}, {33, 37}, {3,
7}, {2, 6}, {81, 85}, {104, 108}, {34, 39}, {51, 54}, {83, 86}, {107, 110}, {10,
12}, {226, 228}, {225, 231}, {169, 175}, {57, 63}, {32, 38}, {82, 84}, {129,
134}, {144, 151}, {195, 202}, {209, 216}, {82, 88}, {177, 187}, {131, 136},
{196, 207}, {180, 191}, {4, 8}, {215, 219}, {182, 186}, {133, 137}, {2, 15},
{198, 203}, {181, 184}, {164, 169}, {150, 155}, {53, 56}, {84, 90}, {211, 221},
{210, 220}, {194, 204}, {87, 88}, {179, 188}, {99, 108}, {3, 16}, {167, 180},
{142, 157}, {11, 24}, {7, 20}, {107, 120}, {101, 113}, {193, 213}, {4, 17}, {14,
27}, {12, 25}, {6, 19}, {101, 112}, {175, 185}, {5, 18}, {74, 93}, {72, 95},
{13, 26}, {109, 122}, {206, 214}, {66, 91}, {171, 177}, {65, 90}, {77, 81},
{170, 182}, {168, 180}, {101, 121}, {8, 21}, {70, 91}, {64, 93}, {10, 23}, {78,
83}, {72, 86}, {163, 189}, {76, 82}, {9, 22}, {172, 179}, {138, 149}, {67, 92},
{35, 60}, {75, 107}, {209, 241}, {205, 237}, {78, 111}, {209, 240}, {208, 241},
{29, 63}, {20, 55}, {24, 59}, {79, 108}, {9, 45}, {202, 238}, {17, 53}, {16,
52}, {19, 54}, {27, 62}, {25, 60}, {14, 40}, {201, 239}, {8, 47}, {26, 61},
{195, 235}, {5, 44}, {219, 242}, {154, 179}, {7, 46}, {192, 234}, {1, 42}, {217,
242}, {142, 165}, {77, 102}, {6, 45}, {21, 56}, {223, 242}, {222, 243}, {220,
241}, {23, 58}, {145, 191}, {203, 229}, {22, 57}, {199, 232}, {28, 44}, {223,
238}, {13, 63}, {218, 232}, {141, 191}, {87, 101}, {22, 34}, {23, 33}, {215,
225}, {129, 183}, {26, 34}, {157, 164}, {90, 96}, {11, 48}, {217, 226}, {203,
240}, {200, 243}, {135, 188}, {14, 50}, {76, 112}, {15, 51}, {77, 113}, {78,
114}, {12, 49}, {221, 224}, {134, 187}, {77, 115}, {213, 235}, {205, 243}, {155,
165}, {86, 104}, {89, 103}, {12, 51}, {214, 233}, {146, 210}, {143, 206}, {174,
236}, {43, 104}, {134, 197}, {23, 83}, {170, 239}, {29, 91}, {137, 207}, {47,
105}, {156, 219}, {159, 216}, {26, 80}, {145, 219}, {143, 197}, {49, 123}, {44,
103}, {168, 228}, {174, 226}, {39, 105}, {165, 235}, {48, 127}, {50, 125}, {7,
86}, {147, 194}, {55, 102}, {146, 192}, {139, 216}, {190, 237}, {186, 233},
{156, 207}, {146, 193}, {43, 127}, {151, 195}, {31, 73}, {166, 240}, {58, 108},
{56, 111}, {4, 92}, {136, 208}, {35, 122}, {139, 210}, {39, 126}, {37, 124},
{158, 196}, {38, 125}, {181, 238}, {150, 205}, {40, 116}, {152, 196}, {57, 100},
{154, 199}, {3, 93}, {31, 65}, {30, 64}, {36, 123}, {178, 237}, {153, 198}, {19,
115}, {160, 192}, {147, 243}, {137, 233}, {136, 232}, {43, 75}, {42, 74}, {41,
73}, {40, 72}, {22, 118}, {21, 117}, {20, 116}, {16, 113}, {38, 71}, {36, 69},
{25, 120}, {27, 121}, {173, 207}, {33, 67}, {32, 66}, {17, 114}, {54, 85}, {37,
70}, {46, 75}, {61, 88}, {39, 65}, {35, 68}, {188, 212}, {189, 213}, {29, 116},
{163, 202}, {161, 200}, {47, 69}, {1, 106}, {141, 230}, {140, 231}, {44, 71},
{30, 117}, {169, 197}, {142, 227}, {190, 211}, {138, 228}, {180, 218}, {175,
193}, {139, 229}, {2, 109}, {131, 236}, {28, 115}, {24, 119}, {167, 215}, {158,
239}, {186, 200}, {158, 234}, {182, 194}, {174, 218}, {162, 215}, {181, 192},
{169, 220}, {170, 221}, {187, 204}, {160, 216}, {149, 236}, {163, 217}, {185,
195}, {171, 208}, {190, 194}, {15, 112}, {177, 206}, {99, 227}, {109, 237}, {11,
138}, {18, 147}, {5, 131}, {33, 167}, {98, 234}, {62, 183}, {79, 197}, {42,
161}, {61, 182}, {59, 176}, {69, 201}, {60, 178}, {41, 166}, {117, 229}, {10,
155}, {76, 222}, {58, 175}, {80, 198}, {115, 228}, {124, 230}, {125, 231}, {87,
204}, {79, 209}, {32, 191}, {124, 227}, {27, 187}, {52, 148}, {117, 212}, {53,
150}, {9, 173}, {68, 224}, {37, 129}, {25, 189}, {24, 188}, {57, 156}, {38,
128}, {104, 206}, {35, 132}, {70, 225}, {75, 227}, {98, 202}, {123, 211}, {89,
242}, {96, 203}, {76, 224}, {93, 241}, {45, 128}, {127, 210}, {10, 164}, {20,
186}, {45, 130}, {62, 145}, {46, 129}, {121, 214}, {119, 199}, {121, 201}, {55,
134}, {91, 233}, {48, 131}, {59, 136}, {103, 212}, {9, 189}, {49, 132}, {89,
236}, {97, 212}, {99, 213}, {50, 133}, {62, 137}, {118, 193}, {61, 133}, {116,
204}, {94, 231}, {95, 230}, {80, 234}, {92, 224}, {94, 226}, {34, 159}, {41,
148}, {36, 153}, {58, 132}, {42, 149}, {56, 135}, {90, 154}, {88, 153}, {85,
151}, {94, 156}, {95, 157}, {4, 199}, {99, 160}, {111, 172}, {122, 185}, {81,
149}, {82, 150}, {103, 162}, {126, 184}, {92, 155}, {102, 161}, {109, 165},
{110, 166}, {111, 167}, {40, 225}, {70, 143}, {106, 163}, {64, 138}, {68, 142},
{65, 139}, {59, 240}, {28, 208}, {102, 171}, {8, 198}, {67, 141}, {66, 140},
{94, 144}, {118, 184}, {21, 218}, {87, 152}, {97, 174}, {98, 173}, {107, 164},
{113, 190}, {95, 143}, {114, 162}, {118, 166}, {125, 173}, {100, 181}, {112,
161}, {78, 157}, {84, 135}, {64, 148}, {127, 171}, {3, 214}, {85, 128}, {119,
162}, {71, 144}, {110, 185}, {123, 172}, {51, 235}, {96, 184}, {106, 178}, {120,
160}, {29, 196}, {74, 147}, {72, 145}, {89, 128}, {105, 176}, {73, 146}, {79,
148}, {15, 211}, {50, 238}, {69, 152}, {6, 217}, {119, 168}, {63, 223}, {80,
176}, {13, 239}, {60, 222}, {81, 178}, {83, 183}, {100, 130}, {126, 152}, {54,
222}, {68, 172}, {36, 205}, {97, 141}, {97, 140}, {11, 229}, {105, 135}, {71,
168}, {67, 179}, {110, 159}, {46, 220}, {47, 221}, {100, 151}, {66, 183}, {17,
230}, {31, 232}, {122, 130}, {124, 132}, {73, 176}, {106, 144}, {120, 130}, {74,
177}, {126, 133}, {98, 159}, {84, 170}, {96, 158}, {114, 140}, {32, 223}
}>;
(II) A more general form is to represent the graph as the orbit of {18, 19}
under the group generated by the following permutations:
a: (2, 42)(3, 35)(4, 14)(5, 106)(6, 149)(7, 132)(8, 13)(9, 11)(10, 134)(12,
55)(15, 161)(16, 60)(17, 40)(18, 178)(19, 81)(20, 49)(21, 63)(22, 229)(23,
129)(24, 173)(25, 52)(26, 198)(27, 92)(28, 151)(29, 56)(30, 100)(31, 181)(32,
180)(33, 183)(34, 203)(36, 182)(37, 83)(38, 168)(39, 96)(41, 160)(43, 99)(44,
144)(45, 138)(46, 58)(47, 239)(48, 189)(50, 199)(51, 102)(53, 116)(54, 77)(57,
117)(59, 98)(61, 153)(62, 67)(64, 130)(65, 184)(66, 167)(68, 214)(69, 170)(70,
78)(72, 230)(73, 192)(74, 109)(75, 108)(76, 101)(79, 107)(82, 87)(84, 152)(85,
115)(86, 124)(89, 226)(90, 126)(91, 111)(93, 122)(94, 103)(97, 219)(104,
227)(105, 158)(110, 209)(113, 222)(114, 225)(118, 139)(119, 125)(120, 148)(121,
224)(123, 186)(127, 213)(128, 228)(131, 163)(133, 154)(135, 196)(136, 202)(137,
179)(140, 215)(141, 145)(142, 206)(143, 157)(147, 237)(150, 204)(155, 187)(156,
212)(159, 240)(162, 231)(164, 197)(165, 177)(166, 216)(171, 235)(172, 233)(174,
242)(175, 220)(176, 234)(185, 241)(188, 207)(190, 243)(193, 210)(194, 205)(195,
208)(200, 211)(201, 221)(217, 236)(218, 223)(232, 238) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(6, 18)(7, 22)(8, 17)(10, 31)(11, 35)(12, 30)(13, 40)(15, 44)(16,
45)(20, 57)(21, 53)(23, 65)(24, 68)(25, 64)(26, 72)(27, 50)(28, 51)(32, 87)(33,
90)(34, 86)(36, 97)(37, 96)(38, 101)(39, 83)(41, 107)(42, 106)(43, 110)(46,
118)(47, 114)(48, 122)(49, 117)(52, 130)(54, 115)(55, 100)(58, 139)(59, 142)(60,
138)(61, 145)(62, 133)(63, 116)(66, 152)(67, 154)(69, 140)(70, 158)(71, 112)(73,
164)(74, 163)(75, 166)(76, 168)(77, 85)(78, 105)(79, 160)(80, 95)(82, 180)(84,
167)(88, 191)(89, 190)(91, 196)(92, 199)(93, 189)(94, 200)(98, 206)(99,
209)(102, 151)(103, 211)(104, 159)(108, 216)(109, 131)(111, 135)(113, 128)(119,
224)(120, 148)(121, 125)(123, 212)(124, 203)(126, 183)(127, 185)(129, 184)(132,
229)(134, 181)(136, 165)(141, 153)(143, 234)(144, 161)(146, 169)(147, 217)(149,
178)(150, 218)(155, 232)(156, 186)(157, 176)(162, 221)(170, 215)(171, 195)(172,
188)(173, 214)(174, 205)(175, 210)(177, 202)(182, 219)(187, 238)(192, 197)(193,
220)(194, 242)(198, 230)(201, 231)(204, 223)(207, 233)(208, 235)(213, 241)(222,
228)(225, 239)(226, 243)(227, 240)(236, 237)
c: (1, 2, 6, 19, 54, 85, 81, 178, 106)(3, 10, 32, 55, 132, 231, 177, 142,
219)(4, 13, 41, 56, 133, 210, 179, 196, 209)(5, 15, 45, 115, 222, 151, 149, 237,
163)(7, 23, 66, 134, 124, 225, 206, 157, 145)(8, 26, 73, 135, 126, 139, 154,
158, 240)(9, 28, 76, 100, 138, 205, 202, 131, 211)(11, 36, 98, 136, 221, 22, 30,
82, 181)(12, 38, 102, 35, 94, 74, 165, 242, 16)(14, 43, 111, 137, 220, 67, 29,
79, 17)(18, 51, 128, 77, 60, 144, 42, 109, 217)(20, 58, 140, 187, 227, 215, 214,
164, 191)(21, 61, 146, 188, 152, 216, 199, 239, 166)(24, 69, 159, 232, 170, 118,
117, 88, 192)(25, 71, 161, 122, 226, 147, 235, 89, 113)(27, 75, 167, 233, 169,
141, 116, 108, 114)(31, 84, 184, 229, 153, 234, 59, 47, 34)(33, 91, 197, 230,
40, 104, 78, 62, 46)(37, 70, 143, 95, 72, 86, 83, 183, 129)(39, 65, 90, 96, 203,
198, 80, 176, 105)(44, 112, 130, 228, 243, 195, 236, 190, 189)(48, 123, 173,
208, 224, 57, 64, 150, 238)(49, 125, 171, 68, 156, 93, 155, 223, 52)(50, 127,
172, 207, 241, 92, 63, 148, 53)(87, 160, 119, 201, 110, 218, 182, 193, 212)(97,
204, 99, 162, 121, 107, 180, 186, 175)(101, 120, 168, 200, 185, 174, 194, 213,
103)
C4[ 243, 24 ]
243
-1 2 5 106 42
-2 1 15 6 109
-3 16 93 214 7
-4 199 92 17 8
-5 44 1 18 131
-6 45 2 19 217
-7 46 3 20 86
-8 198 47 4 21
-9 22 45 189 173
-10 12 23 155 164
-11 24 48 138 229
-12 25 49 51 10
-13 14 26 63 239
-14 13 27 50 40
-15 2 112 211 51
-16 3 113 18 52
-17 4 114 53 230
-18 147 5 16 19
-19 115 6 18 54
-20 55 116 7 186
-21 56 117 8 218
-22 34 57 118 9
-23 33 58 83 10
-24 11 188 59 119
-25 12 189 60 120
-26 34 13 80 61
-27 121 187 14 62
-28 44 115 30 208
-29 91 116 63 196
-30 28 117 31 64
-31 232 73 30 65
-32 66 223 191 38
-33 23 67 167 37
-34 22 26 159 39
-35 132 122 68 60
-36 123 69 205 153
-37 33 124 70 129
-38 125 71 128 32
-39 34 126 105 65
-40 14 225 72 116
-41 166 148 73 43
-42 1 149 161 74
-43 104 127 41 75
-44 103 5 71 28
-45 6 128 9 130
-46 220 7 129 75
-47 221 69 105 8
-48 11 127 52 131
-49 132 12 123 53
-50 133 14 125 238
-51 12 15 235 54
-52 55 48 16 148
-53 56 49 17 150
-54 222 51 19 85
-55 134 102 52 20
-56 111 135 53 21
-57 22 100 156 63
-58 132 23 108 175
-59 176 24 136 240
-60 35 178 222 25
-61 88 133 26 182
-62 145 27 137 183
-63 13 57 223 29
-64 93 148 138 30
-65 90 39 139 31
-66 91 183 140 32
-67 33 179 92 141
-68 35 224 172 142
-69 36 47 201 152
-70 143 91 37 225
-71 44 144 168 38
-72 145 40 95 86
-73 176 146 41 31
-74 177 147 93 42
-75 46 227 107 43
-76 112 222 224 82
-77 102 113 81 115
-78 111 157 114 83
-79 209 148 108 197
-80 176 198 234 26
-81 77 178 149 85
-82 88 84 150 76
-83 23 78 183 86
-84 90 135 82 170
-85 81 128 151 54
-86 104 72 83 7
-87 88 101 204 152
-88 82 61 87 153
-89 242 103 236 128
-90 154 84 96 65
-91 66 233 70 29
-92 67 155 4 224
-93 3 74 64 241
-94 231 144 156 226
-95 143 157 72 230
-96 90 158 203 184
-97 212 140 141 174
-98 234 202 159 173
-99 213 160 227 108
-100 57 181 151 130
-101 121 112 113 87
-102 55 77 171 161
-103 44 89 212 162
-104 206 86 108 43
-105 176 47 135 39
-106 1 144 178 163
-107 110 75 120 164
-108 99 79 58 104
-109 165 122 2 237
-110 166 159 107 185
-111 56 78 167 172
-112 101 15 161 76
-113 77 101 190 16
-114 78 17 140 162
-115 77 28 19 228
-116 204 29 40 20
-117 212 30 229 21
-118 22 166 193 184
-119 199 24 168 162
-120 25 160 107 130
-121 101 201 27 214
-122 35 130 185 109
-123 211 36 49 172
-124 132 37 227 230
-125 231 38 50 173
-126 133 39 184 152
-127 210 48 171 43
-128 45 89 38 85
-129 46 134 37 183
-130 45 100 122 120
-131 48 136 5 236
-132 35 58 124 49
-133 126 137 50 61
-134 55 187 129 197
-135 56 188 105 84
-136 232 59 131 208
-137 133 233 62 207
-138 11 149 228 64
-139 210 216 229 65
-140 66 231 114 97
-141 67 191 97 230
-142 165 68 157 227
-143 70 95 206 197
-144 71 94 106 151
-145 191 72 62 219
-146 210 192 193 73
-147 243 18 194 74
-148 79 41 52 64
-149 81 236 138 42
-150 155 82 205 53
-151 100 144 85 195
-152 69 126 196 87
-153 88 154 198 36
-154 199 90 179 153
-155 165 92 150 10
-156 57 94 207 219
-157 78 95 142 164
-158 234 96 239 196
-159 110 34 216 98
-160 99 192 216 120
-161 112 200 102 42
-162 103 114 215 119
-163 189 202 106 217
-164 157 169 107 10
-165 155 235 109 142
-166 110 41 118 240
-167 33 111 180 215
-168 180 71 228 119
-169 220 164 175 197
-170 221 182 84 239
-171 177 102 127 208
-172 111 68 123 179
-173 125 9 207 98
-174 236 226 97 218
-175 58 169 193 185
-176 80 59 105 73
-177 187 171 74 206
-178 81 60 237 106
-179 154 67 188 172
-180 167 168 191 218
-181 100 192 238 184
-182 170 61 194 186
-183 66 83 62 129
-184 126 181 96 118
-185 110 122 195 175
-186 200 233 182 20
-187 177 134 27 204
-188 24 135 179 212
-189 25 213 9 163
-190 211 113 237 194
-191 145 180 141 32
-192 146 234 181 160
-193 146 213 118 175
-194 190 147 182 204
-195 202 235 151 185
-196 158 29 152 207
-197 143 79 134 169
-198 80 203 8 153
-199 154 232 4 119
-200 243 201 161 186
-201 121 200 69 239
-202 238 195 163 98
-203 198 96 229 240
-204 187 116 194 87
-205 243 36 237 150
-206 143 177 104 214
-207 156 137 173 196
-208 136 28 171 241
-209 79 216 240 241
-210 220 146 127 139
-211 221 123 190 15
-212 188 103 117 97
-213 99 189 235 193
-214 121 233 3 206
-215 167 225 162 219
-216 209 159 160 139
-217 242 6 226 163
-218 232 180 174 21
-219 242 145 156 215
-220 210 46 169 241
-221 211 47 224 170
-222 243 60 54 76
-223 242 238 63 32
-224 221 68 92 76
-225 231 70 215 40
-226 94 217 228 174
-227 99 124 75 142
-228 168 115 138 226
-229 11 203 117 139
-230 124 17 95 141
-231 125 225 94 140
-232 199 136 31 218
-233 91 137 214 186
-234 80 158 192 98
-235 165 213 51 195
-236 89 149 174 131
-237 178 190 205 109
-238 223 202 181 50
-239 13 201 158 170
-240 209 166 59 203
-241 209 220 93 208
-242 89 223 217 219
-243 200 222 147 205
0