C4graphGraph forms for C4 [ 243, 25 ] = UG(ATD[243,45])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 243, 25 ] = UG(ATD[243,45]).

(I) Following is a form readable by MAGMA:

g:=Graph<243|{ {12, 13}, {216, 217}, {174, 175}, {140, 141}, {70, 71}, {30, 31}, {33, 35}, {237, 239}, {145, 147}, {73, 75}, {1, 2}, {221, 222}, {209, 210}, {201, 202}, {197, 198}, {153, 154}, {65, 66}, {125, 126}, {133, 134}, {1, 5}, {234, 238}, {224, 228}, {147, 151}, {146, 150}, {3, 7}, {2, 6}, {3, 6}, {57, 63}, {153, 159}, {115, 116}, {155, 156}, {139, 140}, {123, 124}, {131, 132}, {224, 232}, {66, 72}, {2, 14}, {4, 8}, {3, 15}, {228, 233}, {177, 191}, {118, 121}, {229, 234}, {162, 173}, {9, 25}, {108, 125}, {167, 182}, {140, 158}, {225, 242}, {4, 16}, {75, 95}, {5, 17}, {109, 121}, {7, 18}, {206, 219}, {142, 155}, {66, 87}, {13, 24}, {64, 86}, {193, 215}, {34, 53}, {134, 145}, {9, 17}, {11, 19}, {10, 18}, {32, 57}, {34, 59}, {194, 216}, {204, 214}, {199, 221}, {8, 19}, {33, 58}, {12, 23}, {77, 81}, {78, 82}, {9, 20}, {195, 222}, {168, 181}, {11, 22}, {142, 144}, {206, 208}, {10, 21}, {35, 60}, {67, 99}, {198, 230}, {153, 185}, {74, 106}, {73, 105}, {72, 104}, {69, 101}, {68, 100}, {5, 36}, {70, 103}, {7, 38}, {6, 39}, {80, 113}, {10, 40}, {144, 178}, {64, 98}, {11, 41}, {1, 34}, {159, 188}, {15, 44}, {6, 37}, {132, 167}, {25, 61}, {207, 235}, {197, 225}, {151, 179}, {26, 62}, {14, 43}, {22, 48}, {214, 240}, {23, 49}, {13, 42}, {71, 96}, {31, 56}, {26, 61}, {147, 187}, {149, 189}, {148, 188}, {26, 51}, {30, 55}, {28, 53}, {78, 103}, {25, 50}, {156, 183}, {154, 177}, {145, 186}, {29, 54}, {80, 124}, {81, 125}, {13, 32}, {220, 241}, {157, 176}, {66, 111}, {29, 48}, {82, 127}, {1, 47}, {134, 168}, {69, 107}, {64, 110}, {8, 39}, {205, 226}, {30, 49}, {27, 52}, {192, 240}, {217, 233}, {194, 242}, {25, 43}, {194, 240}, {193, 243}, {138, 184}, {135, 181}, {28, 46}, {128, 178}, {129, 179}, {24, 43}, {142, 189}, {140, 191}, {67, 112}, {31, 43}, {197, 241}, {138, 190}, {77, 121}, {76, 120}, {69, 113}, {78, 122}, {79, 123}, {87, 99}, {71, 114}, {26, 44}, {143, 185}, {27, 45}, {130, 180}, {151, 160}, {17, 41}, {219, 227}, {202, 242}, {157, 165}, {154, 162}, {153, 161}, {200, 241}, {20, 46}, {21, 47}, {72, 115}, {220, 231}, {76, 119}, {81, 106}, {156, 160}, {220, 224}, {218, 230}, {207, 243}, {16, 45}, {223, 226}, {75, 118}, {73, 116}, {27, 37}, {137, 183}, {136, 182}, {128, 190}, {129, 191}, {74, 117}, {217, 230}, {210, 237}, {147, 172}, {79, 112}, {46, 110}, {29, 92}, {31, 93}, {130, 192}, {24, 91}, {17, 85}, {158, 218}, {134, 194}, {19, 87}, {18, 86}, {16, 85}, {175, 234}, {132, 193}, {38, 96}, {155, 221}, {18, 90}, {187, 243}, {171, 227}, {19, 91}, {3, 74}, {169, 224}, {162, 235}, {40, 97}, {184, 242}, {41, 98}, {184, 243}, {164, 239}, {20, 88}, {22, 90}, {21, 89}, {2, 79}, {15, 65}, {171, 229}, {170, 228}, {57, 119}, {54, 102}, {152, 200}, {55, 103}, {50, 99}, {152, 201}, {148, 197}, {59, 106}, {57, 104}, {52, 101}, {32, 114}, {63, 109}, {62, 108}, {44, 126}, {130, 208}, {23, 68}, {159, 204}, {149, 198}, {144, 195}, {58, 105}, {4, 80}, {145, 196}, {158, 203}, {61, 107}, {189, 235}, {41, 126}, {157, 202}, {51, 100}, {47, 120}, {56, 96}, {187, 226}, {15, 84}, {136, 212}, {156, 192}, {14, 83}, {186, 231}, {144, 205}, {137, 212}, {23, 74}, {62, 96}, {63, 97}, {28, 67}, {138, 213}, {4, 102}, {61, 95}, {30, 124}, {60, 95}, {177, 213}, {36, 65}, {161, 199}, {185, 223}, {181, 210}, {167, 206}, {42, 65}, {186, 214}, {188, 208}, {160, 206}, {161, 207}, {35, 76}, {164, 203}, {44, 92}, {45, 93}, {16, 97}, {169, 216}, {163, 209}, {190, 204}, {172, 222}, {53, 70}, {174, 221}, {168, 219}, {173, 217}, {165, 211}, {164, 211}, {166, 209}, {32, 89}, {37, 95}, {152, 227}, {159, 228}, {141, 241}, {182, 202}, {146, 238}, {35, 94}, {170, 215}, {9, 119}, {160, 223}, {70, 198}, {72, 201}, {47, 173}, {73, 203}, {110, 236}, {111, 237}, {39, 164}, {52, 183}, {10, 143}, {46, 171}, {38, 163}, {91, 222}, {105, 236}, {36, 162}, {86, 208}, {89, 223}, {104, 239}, {89, 209}, {100, 236}, {101, 237}, {102, 238}, {90, 211}, {45, 166}, {42, 166}, {40, 165}, {8, 135}, {76, 195}, {84, 219}, {93, 205}, {77, 220}, {12, 158}, {125, 239}, {7, 148}, {60, 175}, {127, 236}, {112, 229}, {114, 231}, {56, 174}, {60, 170}, {48, 167}, {5, 157}, {21, 141}, {121, 225}, {49, 168}, {53, 172}, {51, 170}, {113, 232}, {50, 169}, {54, 173}, {80, 203}, {88, 195}, {92, 199}, {78, 210}, {114, 238}, {11, 149}, {77, 211}, {49, 175}, {48, 174}, {42, 180}, {52, 171}, {111, 240}, {12, 172}, {69, 231}, {38, 133}, {117, 214}, {37, 129}, {100, 192}, {101, 193}, {97, 199}, {40, 131}, {123, 215}, {58, 148}, {59, 149}, {122, 212}, {98, 205}, {102, 201}, {117, 218}, {83, 227}, {120, 200}, {59, 138}, {90, 235}, {58, 136}, {36, 151}, {108, 216}, {115, 196}, {51, 139}, {55, 143}, {109, 215}, {83, 232}, {84, 233}, {55, 137}, {62, 128}, {107, 213}, {63, 128}, {85, 234}, {64, 129}, {122, 187}, {124, 189}, {22, 212}, {88, 154}, {68, 135}, {33, 229}, {67, 135}, {118, 178}, {122, 190}, {29, 218}, {33, 230}, {123, 188}, {104, 161}, {106, 163}, {34, 232}, {82, 152}, {68, 136}, {117, 185}, {127, 179}, {24, 213}, {91, 150}, {119, 186}, {39, 233}, {98, 176}, {27, 200}, {88, 139}, {83, 133}, {110, 184}, {84, 131}, {28, 196}, {108, 182}, {109, 183}, {94, 133}, {127, 163}, {93, 131}, {107, 181}, {81, 177}, {86, 178}, {87, 179}, {111, 139}, {118, 146}, {99, 132}, {92, 180}, {126, 150}, {94, 180}, {14, 226}, {75, 166}, {94, 176}, {116, 155}, {79, 191}, {54, 196}, {56, 204}, {20, 225}, {103, 146}, {71, 176}, {82, 165}, {116, 141}, {115, 137}, {120, 130}, {85, 169}, {50, 207}, {112, 142}, {113, 143}, {105, 150} }>;

(II) A more general form is to represent the graph as the orbit of {12, 13} under the group generated by the following permutations:

a: (2, 34)(3, 28)(4, 13)(5, 47)(6, 53)(7, 46)(8, 12)(9, 10)(11, 140)(14, 232)(15, 196)(16, 32)(17, 21)(18, 20)(19, 158)(22, 139)(23, 135)(24, 80)(25, 143)(26, 137)(27, 71)(29, 66)(30, 107)(31, 69)(33, 127)(35, 82)(36, 173)(37, 70)(38, 171)(39, 172)(40, 119)(41, 141)(42, 102)(43, 113)(44, 115)(45, 114)(48, 111)(49, 181)(50, 185)(51, 212)(52, 96)(54, 65)(55, 61)(56, 101)(57, 97)(58, 236)(59, 79)(60, 78)(62, 183)(64, 197)(67, 74)(72, 92)(73, 150)(75, 146)(76, 165)(77, 144)(81, 142)(84, 145)(85, 89)(86, 225)(87, 218)(88, 90)(91, 203)(93, 231)(94, 152)(95, 103)(98, 241)(99, 117)(100, 136)(104, 199)(106, 112)(108, 156)(109, 128)(110, 148)(116, 126)(120, 157)(121, 178)(122, 170)(123, 138)(124, 213)(125, 155)(129, 198)(130, 202)(131, 186)(132, 214)(133, 227)(134, 219)(147, 233)(149, 191)(151, 217)(153, 207)(154, 235)(159, 243)(160, 216)(163, 229)(164, 222)(166, 238)(167, 240)(169, 223)(174, 237)(175, 210)(176, 200)(177, 189)(179, 230)(180, 201)(182, 192)(184, 188)(187, 228)(190, 215)(193, 204)(194, 206)(195, 211)(205, 220)(208, 242)(209, 234)(221, 239)(224, 226)
b: (2, 5)(3, 9)(6, 17)(7, 20)(8, 16)(10, 28)(11, 27)(12, 32)(14, 36)(15, 25)(18, 46)(19, 45)(21, 53)(22, 52)(23, 57)(24, 42)(29, 69)(30, 72)(31, 66)(33, 77)(34, 47)(35, 81)(37, 41)(38, 88)(39, 85)(40, 67)(43, 65)(44, 61)(48, 101)(49, 104)(50, 84)(51, 62)(54, 113)(55, 115)(56, 111)(58, 121)(59, 120)(60, 125)(63, 68)(70, 141)(71, 140)(73, 146)(74, 119)(75, 150)(76, 106)(78, 155)(79, 157)(80, 102)(82, 142)(83, 162)(86, 110)(87, 93)(89, 172)(90, 171)(91, 166)(92, 107)(94, 177)(95, 126)(96, 139)(97, 135)(98, 129)(99, 131)(100, 128)(103, 116)(105, 118)(108, 170)(109, 136)(112, 165)(114, 158)(117, 186)(122, 156)(123, 202)(124, 201)(127, 144)(130, 138)(133, 154)(134, 153)(143, 196)(145, 185)(147, 223)(148, 225)(149, 200)(151, 226)(152, 189)(159, 194)(160, 187)(161, 168)(163, 195)(164, 234)(167, 193)(169, 233)(173, 232)(174, 237)(175, 239)(176, 191)(178, 236)(179, 205)(180, 213)(181, 199)(182, 215)(183, 212)(184, 208)(188, 242)(190, 192)(198, 241)(203, 238)(204, 240)(206, 243)(207, 219)(209, 222)(210, 221)(211, 229)(216, 228)(217, 224)(218, 231)(220, 230)(227, 235)
c: (1, 2)(3, 21)(4, 35)(5, 79)(6, 47)(7, 10)(8, 76)(9, 67)(11, 144)(12, 13)(14, 34)(15, 141)(16, 33)(17, 112)(19, 195)(20, 99)(22, 178)(23, 32)(24, 172)(25, 28)(26, 115)(27, 217)(29, 75)(30, 71)(31, 70)(36, 191)(37, 173)(38, 143)(39, 120)(40, 148)(41, 142)(42, 158)(43, 53)(44, 116)(45, 230)(46, 50)(48, 118)(49, 114)(51, 72)(52, 216)(54, 95)(55, 96)(56, 103)(57, 68)(58, 97)(59, 226)(60, 102)(61, 196)(62, 137)(63, 136)(64, 235)(65, 140)(66, 139)(69, 134)(73, 92)(74, 89)(77, 206)(78, 204)(80, 94)(81, 160)(82, 159)(83, 232)(84, 241)(85, 229)(86, 90)(87, 88)(91, 222)(93, 198)(98, 189)(100, 104)(101, 194)(105, 199)(106, 223)(107, 145)(108, 183)(109, 182)(110, 207)(113, 133)(117, 209)(119, 135)(121, 167)(122, 190)(123, 157)(124, 176)(125, 156)(126, 155)(127, 153)(128, 212)(129, 162)(130, 164)(131, 197)(132, 225)(138, 187)(146, 174)(147, 213)(149, 205)(150, 221)(151, 177)(152, 228)(154, 179)(161, 236)(163, 185)(165, 188)(166, 218)(168, 231)(169, 171)(170, 201)(175, 238)(180, 203)(181, 186)(184, 243)(192, 239)(193, 242)(200, 233)(202, 215)(208, 211)(210, 214)(219, 220)(224, 227)(237, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 243, 25 ]
243
-1 34 2 47 5
-2 1 79 14 6
-3 15 6 7 74
-4 80 102 16 8
-5 1 36 157 17
-6 2 3 37 39
-7 3 38 148 18
-8 135 4 39 19
-9 25 17 20 119
-10 143 18 40 21
-11 22 149 19 41
-12 23 13 158 172
-13 12 24 42 32
-14 2 83 226 43
-15 44 3 84 65
-16 45 4 85 97
-17 5 41 85 9
-18 90 7 86 10
-19 11 91 8 87
-20 88 46 225 9
-21 89 47 141 10
-22 11 90 212 48
-23 12 68 49 74
-24 13 91 213 43
-25 50 61 9 43
-26 44 61 51 62
-27 45 200 37 52
-28 67 46 53 196
-29 48 92 218 54
-30 55 124 49 31
-31 56 93 30 43
-32 89 13 57 114
-33 35 58 229 230
-34 1 232 59 53
-35 33 60 94 76
-36 5 151 162 65
-37 27 6 95 129
-38 133 7 96 163
-39 233 6 8 164
-40 165 97 10 131
-41 11 126 17 98
-42 166 13 180 65
-43 24 14 25 31
-44 15 26 92 126
-45 166 16 27 93
-46 110 28 171 20
-47 1 173 21 120
-48 22 167 29 174
-49 23 168 30 175
-50 99 25 169 207
-51 100 26 170 139
-52 101 27 171 183
-53 34 70 28 172
-54 102 29 173 196
-55 143 103 137 30
-56 204 96 31 174
-57 104 63 119 32
-58 33 136 148 105
-59 34 138 149 106
-60 35 170 95 175
-61 25 26 95 107
-62 26 128 96 108
-63 57 128 97 109
-64 110 129 86 98
-65 66 36 15 42
-66 111 72 65 87
-67 99 112 135 28
-68 23 100 135 136
-69 231 101 113 107
-70 198 103 71 53
-71 176 70 114 96
-72 66 201 104 115
-73 203 105 116 75
-74 23 3 106 117
-75 166 73 95 118
-76 35 195 119 120
-77 121 220 211 81
-78 122 210 103 82
-79 2 112 123 191
-80 113 124 4 203
-81 77 177 125 106
-82 165 78 127 152
-83 133 232 14 227
-84 233 15 131 219
-85 234 169 16 17
-86 178 18 64 208
-87 66 99 179 19
-88 154 139 195 20
-89 209 223 21 32
-90 22 211 235 18
-91 24 222 150 19
-92 44 199 180 29
-93 45 205 31 131
-94 176 133 35 180
-95 37 60 61 75
-96 56 38 71 62
-97 199 16 40 63
-98 176 205 41 64
-99 132 67 50 87
-100 68 192 236 51
-101 69 193 237 52
-102 201 4 238 54
-103 55 78 146 70
-104 57 72 161 239
-105 58 236 73 150
-106 59 81 74 163
-107 69 213 181 61
-108 125 182 62 216
-109 121 215 183 63
-110 46 236 184 64
-111 66 237 139 240
-112 67 79 229 142
-113 143 232 69 80
-114 231 71 238 32
-115 137 72 116 196
-116 155 115 73 141
-117 214 74 185 218
-118 121 178 146 75
-119 57 9 76 186
-120 200 47 130 76
-121 77 225 118 109
-122 187 78 190 212
-123 188 79 124 215
-124 123 189 80 30
-125 81 126 239 108
-126 44 125 150 41
-127 179 82 236 163
-128 178 190 62 63
-129 179 37 191 64
-130 180 192 120 208
-131 132 93 40 84
-132 99 167 193 131
-133 134 38 83 94
-134 133 145 168 194
-135 67 68 181 8
-136 68 58 212 182
-137 55 212 115 183
-138 190 59 213 184
-139 88 111 51 140
-140 158 191 139 141
-141 116 140 21 241
-142 144 155 112 189
-143 55 113 185 10
-144 178 205 195 142
-145 134 147 196 186
-146 103 150 238 118
-147 187 145 172 151
-148 188 58 7 197
-149 11 198 189 59
-150 91 146 126 105
-151 36 179 147 160
-152 200 201 82 227
-153 154 159 161 185
-154 88 177 162 153
-155 221 156 116 142
-156 155 192 160 183
-157 165 176 202 5
-158 12 203 140 218
-159 188 204 228 153
-160 156 223 151 206
-161 199 104 207 153
-162 154 36 235 173
-163 209 38 127 106
-164 211 203 39 239
-165 211 157 82 40
-166 209 45 42 75
-167 132 48 182 206
-168 134 49 181 219
-169 224 50 216 85
-170 60 215 51 228
-171 46 227 52 229
-172 12 222 147 53
-173 47 162 217 54
-174 56 221 48 175
-175 234 49 60 174
-176 157 71 94 98
-177 154 81 191 213
-178 144 128 118 86
-179 127 129 151 87
-180 92 94 42 130
-181 210 135 168 107
-182 167 136 202 108
-183 156 137 52 109
-184 110 242 243 138
-185 143 223 117 153
-186 231 145 214 119
-187 122 243 147 226
-188 123 148 159 208
-189 124 235 149 142
-190 122 138 204 128
-191 177 79 129 140
-192 100 156 130 240
-193 132 243 101 215
-194 242 134 216 240
-195 88 144 222 76
-196 145 115 28 54
-197 198 148 225 241
-198 70 149 197 230
-199 221 92 161 97
-200 27 152 120 241
-201 102 202 72 152
-202 242 157 201 182
-203 80 158 73 164
-204 56 190 159 214
-205 144 93 226 98
-206 167 160 208 219
-207 243 235 50 161
-208 188 206 86 130
-209 89 166 210 163
-210 209 78 181 237
-211 77 165 90 164
-212 22 122 136 137
-213 177 24 138 107
-214 204 117 240 186
-215 123 170 193 109
-216 169 194 217 108
-217 233 216 173 230
-218 158 29 117 230
-219 168 84 227 206
-220 77 231 224 241
-221 155 199 222 174
-222 221 91 172 195
-223 89 160 226 185
-224 220 232 169 228
-225 121 242 20 197
-226 187 14 223 205
-227 83 171 152 219
-228 233 224 159 170
-229 33 112 234 171
-230 33 198 217 218
-231 220 69 114 186
-232 34 113 224 83
-233 39 84 217 228
-234 238 85 229 175
-235 90 189 162 207
-236 110 100 105 127
-237 111 210 101 239
-238 102 146 234 114
-239 125 104 237 164
-240 111 192 214 194
-241 220 200 141 197
-242 202 225 194 184
-243 187 193 184 207
0

**************