[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 26 ] =
UG(ATD[243,47]).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {192, 193}, {229, 231}, {233, 235}, {1, 2}, {169, 170}, {44, 47},
{17, 18}, {1, 5}, {3, 7}, {2, 6}, {43, 46}, {97, 103}, {64, 71}, {33, 41}, {85,
93}, {130, 138}, {66, 75}, {231, 238}, {195, 202}, {98, 104}, {145, 155}, {133,
142}, {150, 157}, {2, 14}, {227, 239}, {214, 218}, {4, 8}, {3, 15}, {83, 95},
{119, 123}, {84, 89}, {211, 222}, {162, 175}, {36, 42}, {183, 185}, {101, 107},
{34, 45}, {208, 223}, {196, 203}, {139, 155}, {128, 145}, {137, 152}, {141,
159}, {11, 24}, {225, 242}, {4, 16}, {76, 88}, {70, 82}, {69, 81}, {68, 80}, {7,
19}, {6, 18}, {5, 17}, {12, 25}, {229, 240}, {203, 221}, {13, 26}, {206, 217},
{204, 219}, {172, 180}, {200, 210}, {133, 158}, {192, 219}, {174, 181}, {8, 20},
{34, 62}, {33, 61}, {32, 60}, {9, 21}, {10, 23}, {172, 177}, {198, 216}, {9,
22}, {236, 243}, {136, 151}, {74, 85}, {200, 232}, {201, 233}, {156, 189}, {196,
229}, {6, 36}, {202, 232}, {7, 37}, {11, 40}, {27, 56}, {15, 44}, {31, 59}, {12,
41}, {149, 176}, {28, 57}, {23, 50}, {21, 48}, {14, 43}, {5, 35}, {215, 241},
{194, 228}, {13, 42}, {29, 58}, {22, 49}, {77, 101}, {66, 107}, {207, 230}, {79,
102}, {24, 51}, {197, 238}, {143, 164}, {134, 173}, {26, 54}, {27, 55}, {10,
39}, {222, 243}, {193, 236}, {25, 52}, {78, 99}, {8, 38}, {143, 161}, {66, 108},
{26, 53}, {221, 237}, {90, 104}, {12, 63}, {76, 127}, {72, 123}, {84, 96}, {73,
124}, {199, 242}, {158, 171}, {150, 163}, {75, 126}, {20, 34}, {159, 169}, {74,
125}, {64, 120}, {144, 168}, {65, 121}, {146, 171}, {73, 115}, {213, 239}, {209,
235}, {148, 174}, {156, 167}, {18, 46}, {19, 47}, {128, 188}, {129, 189}, {16,
45}, {71, 122}, {30, 35}, {13, 51}, {128, 190}, {208, 239}, {28, 92}, {173,
237}, {160, 224}, {149, 213}, {30, 94}, {29, 93}, {130, 194}, {131, 195}, {132,
196}, {16, 82}, {162, 224}, {150, 212}, {25, 91}, {24, 90}, {21, 87}, {20, 86},
{17, 83}, {35, 96}, {39, 99}, {36, 97}, {166, 227}, {147, 214}, {18, 84}, {170,
236}, {167, 225}, {142, 200}, {19, 85}, {32, 103}, {148, 211}, {50, 117}, {47,
104}, {45, 106}, {37, 98}, {63, 119}, {185, 241}, {132, 204}, {46, 103}, {153,
208}, {133, 204}, {62, 116}, {163, 233}, {141, 199}, {140, 198}, {59, 112},
{151, 220}, {35, 111}, {188, 240}, {42, 102}, {41, 101}, {40, 100}, {9, 68},
{174, 227}, {165, 232}, {62, 115}, {60, 113}, {43, 102}, {14, 67}, {22, 88},
{58, 116}, {56, 118}, {23, 89}, {61, 114}, {129, 209}, {42, 120}, {63, 109}, {5,
86}, {10, 94}, {139, 223}, {134, 210}, {58, 110}, {57, 109}, {56, 108}, {154,
207}, {187, 237}, {181, 226}, {49, 105}, {178, 234}, {168, 240}, {147, 203},
{146, 202}, {31, 70}, {144, 201}, {48, 105}, {140, 214}, {176, 234}, {143, 213},
{130, 217}, {54, 106}, {182, 234}, {55, 107}, {175, 242}, {191, 226}, {190,
227}, {14, 80}, {186, 228}, {15, 81}, {145, 206}, {183, 232}, {31, 127}, {173,
204}, {180, 213}, {136, 235}, {137, 237}, {138, 236}, {162, 196}, {179, 212},
{32, 72}, {13, 100}, {57, 80}, {30, 114}, {135, 235}, {55, 91}, {29, 112}, {33,
78}, {1, 113}, {59, 74}, {165, 215}, {186, 206}, {187, 207}, {38, 83}, {184,
205}, {52, 67}, {23, 111}, {52, 77}, {171, 210}, {155, 226}, {15, 117}, {189,
199}, {169, 211}, {53, 79}, {154, 225}, {161, 218}, {50, 78}, {191, 195}, {168,
212}, {34, 95}, {164, 217}, {54, 75}, {36, 90}, {153, 231}, {152, 230}, {58,
186}, {52, 181}, {56, 185}, {90, 216}, {113, 243}, {3, 135}, {107, 238}, {4,
130}, {76, 202}, {102, 224}, {99, 228}, {1, 136}, {49, 184}, {32, 170}, {108,
230}, {110, 226}, {69, 200}, {71, 201}, {24, 151}, {72, 199}, {88, 215}, {63,
175}, {91, 203}, {61, 172}, {27, 137}, {65, 211}, {51, 160}, {65, 210}, {53,
161}, {54, 162}, {29, 139}, {64, 216}, {39, 190}, {61, 164}, {87, 205}, {89,
194}, {94, 197}, {67, 222}, {93, 195}, {95, 193}, {60, 163}, {38, 134}, {2,
160}, {100, 198}, {125, 223}, {46, 141}, {37, 129}, {123, 222}, {127, 218}, {3,
165}, {114, 212}, {127, 216}, {97, 201}, {115, 219}, {17, 184}, {22, 191}, {120,
209}, {75, 225}, {108, 192}, {55, 154}, {48, 158}, {49, 159}, {94, 240}, {115,
221}, {7, 182}, {44, 157}, {16, 161}, {106, 219}, {37, 151}, {62, 140}, {41,
155}, {40, 154}, {109, 223}, {111, 220}, {118, 197}, {57, 141}, {11, 189}, {103,
209}, {112, 198}, {43, 156}, {68, 243}, {98, 218}, {121, 193}, {96, 217}, {28,
166}, {28, 167}, {113, 205}, {9, 183}, {39, 153}, {38, 152}, {4, 187}, {47,
144}, {122, 197}, {72, 136}, {116, 180}, {48, 241}, {69, 132}, {51, 242}, {65,
131}, {119, 181}, {126, 188}, {73, 138}, {10, 206}, {89, 157}, {8, 205}, {92,
153}, {112, 182}, {116, 178}, {117, 179}, {66, 133}, {68, 131}, {91, 156}, {124,
187}, {45, 230}, {69, 137}, {70, 139}, {77, 128}, {126, 179}, {79, 129}, {120,
182}, {121, 183}, {124, 178}, {110, 190}, {96, 177}, {98, 176}, {109, 191}, {21,
192}, {71, 146}, {26, 207}, {100, 178}, {101, 179}, {99, 180}, {78, 150}, {76,
149}, {6, 220}, {123, 160}, {125, 166}, {50, 238}, {79, 147}, {11, 214}, {87,
138}, {74, 148}, {82, 140}, {53, 234}, {92, 188}, {121, 152}, {19, 241}, {70,
164}, {114, 145}, {64, 165}, {67, 166}, {118, 144}, {80, 184}, {81, 185}, {82,
186}, {111, 135}, {118, 158}, {119, 159}, {77, 167}, {12, 231}, {59, 215}, {93,
176}, {95, 177}, {105, 134}, {20, 228}, {44, 220}, {31, 239}, {33, 208}, {92,
175}, {124, 143}, {122, 142}, {40, 221}, {86, 163}, {88, 174}, {30, 233}, {73,
177}, {25, 224}, {81, 168}, {106, 147}, {83, 169}, {86, 172}, {87, 173}, {104,
146}, {126, 132}, {110, 149}, {117, 142}, {97, 157}, {105, 148}, {122, 135},
{27, 229}, {60, 194}, {84, 170}, {85, 171}, {125, 131} }>;
(II) A more general form is to represent the graph as the orbit of {192, 193}
under the group generated by the following permutations:
a: (2, 136)(3, 52)(4, 34)(5, 113)(6, 72)(7, 25)(8, 20)(9, 114)(10, 65)(11,
13)(12, 19)(14, 235)(15, 181)(16, 45)(17, 60)(18, 32)(21, 61)(22, 212)(23,
211)(24, 51)(26, 214)(27, 29)(28, 71)(30, 68)(31, 66)(33, 48)(35, 243)(36,
199)(37, 224)(38, 228)(39, 210)(40, 100)(41, 241)(42, 189)(43, 209)(44, 119)(46,
103)(47, 63)(49, 150)(50, 148)(53, 147)(54, 218)(55, 112)(56, 139)(57, 201)(58,
137)(59, 107)(62, 187)(64, 167)(67, 135)(69, 110)(70, 108)(74, 238)(75, 127)(76,
126)(77, 165)(78, 105)(80, 233)(81, 226)(82, 230)(83, 194)(84, 170)(85, 231)(86,
205)(87, 172)(88, 179)(89, 169)(90, 242)(91, 182)(92, 146)(93, 229)(94, 131)(95,
130)(96, 236)(97, 141)(98, 162)(99, 134)(101, 215)(102, 129)(104, 175)(106,
161)(109, 144)(111, 222)(115, 124)(116, 237)(117, 174)(118, 223)(120, 156)(121,
206)(122, 166)(123, 220)(125, 197)(128, 232)(132, 149)(133, 239)(138, 177)(140,
207)(142, 227)(143, 219)(145, 183)(151, 160)(152, 186)(153, 171)(154, 198)(155,
185)(157, 159)(158, 208)(163, 184)(164, 192)(168, 191)(173, 180)(176, 196)(178,
221)(188, 202)(190, 200)(193, 217)(195, 240)(203, 234)(204, 213)(216, 225) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 6, 18, 46, 103, 32, 72, 136)(3, 8, 25, 47, 95, 167, 71, 138, 175)(4,
12, 19, 34, 77, 146, 73, 92, 165)(5, 14, 36, 84, 141, 209, 60, 123, 151)(7, 20,
52, 104, 177, 28, 64, 130, 63)(9, 26, 50, 105, 147, 212, 65, 40, 94)(10, 22, 53,
78, 148, 214, 114, 131, 100)(11, 30, 68, 13, 23, 49, 79, 150, 211)(15, 38, 91,
144, 193, 225, 122, 87, 162)(16, 41, 85, 62, 128, 202, 124, 153, 215)(17, 43,
97, 170, 199, 235, 113, 160, 220)(21, 54, 117, 134, 203, 168, 121, 154, 197)(24,
35, 80, 42, 89, 159, 129, 163, 222)(27, 56, 108, 66, 133, 204, 132, 69, 137)(29,
58, 110, 149, 213, 239, 31, 70, 139)(33, 74, 140, 145, 195, 178, 39, 88,
161)(37, 86, 67, 90, 96, 57, 120, 194, 119)(44, 83, 156, 201, 236, 242, 135,
205, 224)(45, 101, 171, 115, 188, 232, 187, 231, 241)(48, 106, 179, 210, 221,
240, 183, 207, 238)(51, 111, 184, 102, 157, 169, 189, 233, 243)(55, 118, 192,
75, 142, 173, 196, 81, 152)(59, 82, 155, 93, 116, 190, 76, 143, 208)(61, 125,
198, 206, 191, 234, 99, 174, 218)(98, 172, 166, 216, 217, 109, 182, 228,
181)(107, 158, 219, 126, 200, 237, 229, 185, 230)(112, 186, 226, 176, 180, 227,
127, 164, 223)
c: (2, 5)(3, 9)(4, 11)(6, 17)(7, 21)(8, 24)(10, 28)(12, 33)(13, 34)(14, 35)(15,
22)(16, 40)(19, 48)(20, 51)(23, 57)(25, 61)(26, 62)(27, 31)(29, 66)(30, 67)(36,
83)(37, 87)(38, 90)(39, 92)(42, 95)(43, 96)(44, 49)(45, 100)(46, 84)(47,
105)(50, 109)(52, 114)(53, 115)(54, 116)(55, 70)(56, 59)(58, 75)(60, 72)(63,
78)(64, 121)(65, 71)(68, 135)(69, 76)(73, 79)(74, 118)(77, 145)(80, 111)(81,
88)(82, 154)(85, 158)(86, 160)(89, 141)(91, 164)(93, 133)(94, 166)(97, 169)(98,
173)(99, 175)(101, 155)(102, 177)(103, 170)(104, 134)(106, 178)(107, 139)(108,
112)(110, 126)(113, 136)(117, 191)(119, 150)(120, 193)(122, 131)(123, 163)(124,
147)(125, 197)(127, 137)(129, 138)(130, 189)(132, 149)(140, 207)(142, 195)(143,
203)(144, 148)(146, 210)(151, 205)(152, 216)(156, 217)(157, 159)(161, 221)(162,
180)(165, 183)(167, 206)(168, 174)(172, 224)(176, 204)(179, 226)(181, 212)(182,
192)(184, 220)(185, 215)(186, 225)(187, 214)(188, 190)(194, 199)(196, 213)(198,
230)(200, 202)(201, 211)(208, 231)(209, 236)(218, 237)(219, 234)(222, 233)(223,
238)(227, 240)(228, 242)(229, 239)(235, 243)
C4[ 243, 26 ]
243
-1 2 113 136 5
-2 1 14 6 160
-3 165 135 15 7
-4 187 16 8 130
-5 1 35 17 86
-6 220 2 36 18
-7 3 37 182 19
-8 4 38 205 20
-9 22 68 183 21
-10 23 39 94 206
-11 24 189 214 40
-12 231 25 41 63
-13 100 26 51 42
-14 67 2 80 43
-15 44 3 81 117
-16 45 4 82 161
-17 5 83 18 184
-18 46 6 17 84
-19 47 7 85 241
-20 34 8 228 86
-21 48 192 9 87
-22 88 191 49 9
-23 89 111 50 10
-24 11 90 51 151
-25 12 91 224 52
-26 13 53 207 54
-27 55 56 137 229
-28 166 57 167 92
-29 112 58 93 139
-30 35 233 114 94
-31 59 70 127 239
-32 103 60 170 72
-33 78 61 41 208
-34 45 62 95 20
-35 111 5 30 96
-36 90 6 42 97
-37 7 129 151 98
-38 134 83 8 152
-39 99 190 10 153
-40 11 154 100 221
-41 33 12 155 101
-42 13 36 102 120
-43 46 156 14 102
-44 220 47 157 15
-45 34 16 106 230
-46 103 18 141 43
-47 44 144 104 19
-48 158 105 21 241
-49 22 159 105 184
-50 23 78 117 238
-51 242 13 24 160
-52 77 67 25 181
-53 79 234 26 161
-54 26 106 162 75
-55 154 91 27 107
-56 27 118 108 185
-57 80 28 141 109
-58 110 116 29 186
-59 112 215 74 31
-60 113 194 163 32
-61 33 114 172 164
-62 34 115 116 140
-63 12 119 109 175
-64 165 71 216 120
-65 121 210 211 131
-66 133 107 75 108
-67 166 222 14 52
-68 243 80 9 131
-69 132 200 81 137
-70 82 139 31 164
-71 122 146 201 64
-72 199 123 136 32
-73 177 124 115 138
-74 59 125 148 85
-75 66 126 225 54
-76 88 202 127 149
-77 101 167 128 52
-78 33 99 50 150
-79 102 147 129 53
-80 57 68 14 184
-81 69 168 15 185
-82 70 16 140 186
-83 169 38 17 95
-84 89 170 18 96
-85 93 171 19 74
-86 5 172 20 163
-87 138 205 173 21
-88 22 215 174 76
-89 23 157 84 194
-90 24 36 104 216
-91 55 156 25 203
-92 188 28 153 175
-93 176 29 85 195
-94 30 240 10 197
-95 34 177 83 193
-96 177 35 84 217
-97 36 157 201 103
-98 176 37 104 218
-99 78 180 39 228
-100 198 13 178 40
-101 77 179 41 107
-102 79 224 42 43
-103 209 46 97 32
-104 90 47 146 98
-105 134 48 49 148
-106 45 147 54 219
-107 55 66 101 238
-108 66 56 192 230
-109 57 223 191 63
-110 58 190 149 226
-111 220 23 35 135
-112 198 59 182 29
-113 1 243 60 205
-114 145 212 61 30
-115 221 62 73 219
-116 178 58 180 62
-117 179 15 50 142
-118 56 144 158 197
-119 123 159 181 63
-120 209 182 42 64
-121 193 183 152 65
-122 135 71 142 197
-123 222 72 160 119
-124 143 187 178 73
-125 166 223 74 131
-126 132 188 179 75
-127 216 31 218 76
-128 77 188 145 190
-129 209 79 189 37
-130 4 138 194 217
-131 68 125 195 65
-132 69 126 204 196
-133 66 158 204 142
-134 210 38 105 173
-135 111 122 3 235
-136 1 235 72 151
-137 69 27 237 152
-138 236 73 130 87
-139 155 223 70 29
-140 198 82 214 62
-141 199 46 57 159
-142 122 133 200 117
-143 124 213 161 164
-144 47 168 201 118
-145 155 114 128 206
-146 202 71 104 171
-147 79 203 214 106
-148 211 105 74 174
-149 110 176 213 76
-150 78 157 212 163
-151 220 24 37 136
-152 121 38 137 230
-153 231 92 39 208
-154 55 225 40 207
-155 145 226 139 41
-156 167 189 91 43
-157 44 89 150 97
-158 133 48 171 118
-159 169 49 119 141
-160 2 123 224 51
-161 143 16 53 218
-162 224 196 54 175
-163 233 60 150 86
-164 143 70 61 217
-165 232 3 215 64
-166 67 125 28 227
-167 77 156 225 28
-168 144 212 81 240
-169 211 159 170 83
-170 169 236 84 32
-171 210 146 158 85
-172 177 180 61 86
-173 134 204 237 87
-174 88 148 181 227
-175 242 92 63 162
-176 234 93 149 98
-177 73 95 172 96
-178 100 124 234 116
-179 101 212 126 117
-180 99 213 116 172
-181 226 52 119 174
-182 112 234 7 120
-183 121 232 9 185
-184 80 49 17 205
-185 56 81 183 241
-186 58 82 206 228
-187 124 4 237 207
-188 92 126 128 240
-189 11 199 156 129
-190 110 39 128 227
-191 22 226 195 109
-192 193 108 21 219
-193 121 192 236 95
-194 89 60 228 130
-195 191 202 93 131
-196 132 203 162 229
-197 122 94 238 118
-198 100 112 216 140
-199 242 189 72 141
-200 210 232 69 142
-201 144 233 71 97
-202 232 146 195 76
-203 221 91 147 196
-204 132 133 173 219
-205 113 8 184 87
-206 145 217 10 186
-207 154 187 26 230
-208 33 223 239 153
-209 103 235 129 120
-210 134 200 171 65
-211 222 169 148 65
-212 168 179 114 150
-213 143 180 149 239
-214 11 147 140 218
-215 88 165 59 241
-216 198 90 127 64
-217 96 206 130 164
-218 214 127 161 98
-219 115 192 204 106
-220 44 111 6 151
-221 115 203 237 40
-222 67 243 123 211
-223 125 139 109 208
-224 25 102 160 162
-225 154 242 167 75
-226 110 155 191 181
-227 166 190 239 174
-228 99 194 20 186
-229 231 27 196 240
-230 45 108 152 207
-231 12 238 229 153
-232 165 200 202 183
-233 201 235 30 163
-234 176 178 182 53
-235 209 233 135 136
-236 243 170 138 193
-237 187 221 137 173
-238 231 50 107 197
-239 213 227 31 208
-240 188 168 94 229
-241 48 215 19 185
-242 199 225 51 175
-243 68 222 113 236
0