C4graphGraph forms for C4 [ 243, 28 ] = UG(ATD[243,52])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 243, 28 ] = UG(ATD[243,52]).

(I) Following is a form readable by MAGMA:

g:=Graph<243|{ {166, 167}, {190, 191}, {192, 194}, {1, 2}, {157, 158}, {1, 5}, {233, 237}, {3, 7}, {2, 6}, {176, 181}, {234, 239}, {201, 204}, {1, 6}, {123, 124}, {89, 94}, {80, 89}, {193, 200}, {164, 173}, {162, 171}, {177, 187}, {225, 235}, {198, 204}, {179, 185}, {65, 74}, {193, 202}, {151, 156}, {4, 8}, {2, 15}, {81, 92}, {178, 188}, {96, 111}, {196, 203}, {180, 187}, {3, 19}, {197, 213}, {67, 83}, {4, 20}, {100, 117}, {195, 210}, {109, 124}, {1, 18}, {11, 24}, {3, 16}, {7, 19}, {106, 126}, {4, 17}, {198, 211}, {14, 27}, {12, 25}, {79, 90}, {96, 118}, {230, 240}, {5, 18}, {229, 242}, {72, 95}, {13, 26}, {202, 210}, {111, 118}, {234, 243}, {174, 180}, {203, 209}, {73, 82}, {233, 242}, {8, 20}, {10, 22}, {9, 21}, {194, 223}, {236, 241}, {9, 23}, {238, 240}, {75, 84}, {236, 243}, {192, 223}, {103, 120}, {143, 175}, {141, 172}, {21, 55}, {145, 179}, {29, 63}, {28, 62}, {25, 59}, {24, 58}, {16, 51}, {205, 238}, {94, 122}, {16, 53}, {11, 45}, {27, 61}, {26, 60}, {90, 124}, {17, 54}, {192, 231}, {149, 178}, {74, 109}, {95, 120}, {5, 45}, {7, 47}, {6, 46}, {133, 175}, {135, 173}, {15, 34}, {134, 171}, {22, 56}, {194, 236}, {23, 57}, {131, 172}, {9, 57}, {11, 58}, {139, 186}, {13, 60}, {4, 54}, {10, 56}, {14, 61}, {194, 241}, {2, 52}, {3, 53}, {83, 101}, {12, 59}, {90, 109}, {8, 48}, {95, 103}, {17, 40}, {10, 49}, {15, 52}, {14, 51}, {9, 55}, {12, 50}, {13, 50}, {165, 228}, {166, 228}, {168, 234}, {167, 229}, {183, 243}, {132, 195}, {181, 242}, {168, 239}, {164, 227}, {138, 205}, {35, 107}, {184, 242}, {152, 211}, {27, 87}, {38, 106}, {62, 115}, {137, 196}, {169, 230}, {191, 240}, {188, 243}, {33, 113}, {184, 232}, {181, 229}, {142, 222}, {139, 218}, {184, 233}, {154, 200}, {185, 235}, {34, 113}, {42, 127}, {36, 114}, {188, 234}, {56, 110}, {41, 126}, {182, 225}, {180, 227}, {128, 215}, {28, 68}, {187, 227}, {150, 206}, {51, 107}, {39, 127}, {38, 126}, {29, 69}, {148, 205}, {191, 230}, {32, 122}, {52, 110}, {40, 114}, {155, 192}, {183, 236}, {37, 121}, {182, 235}, {30, 64}, {153, 199}, {31, 65}, {186, 218}, {187, 219}, {18, 115}, {129, 224}, {26, 123}, {24, 121}, {22, 119}, {20, 117}, {30, 124}, {169, 203}, {33, 67}, {32, 66}, {31, 125}, {17, 114}, {160, 195}, {25, 122}, {21, 118}, {34, 70}, {43, 79}, {42, 78}, {41, 77}, {40, 76}, {35, 71}, {30, 123}, {170, 207}, {49, 87}, {190, 216}, {19, 116}, {191, 216}, {182, 209}, {136, 239}, {38, 65}, {48, 89}, {153, 240}, {59, 82}, {177, 219}, {140, 231}, {154, 241}, {36, 72}, {39, 75}, {38, 74}, {37, 73}, {60, 81}, {189, 208}, {169, 196}, {48, 94}, {23, 120}, {130, 237}, {28, 115}, {146, 226}, {161, 208}, {183, 198}, {46, 92}, {160, 210}, {159, 237}, {47, 93}, {39, 84}, {159, 233}, {163, 213}, {37, 82}, {153, 238}, {165, 221}, {148, 238}, {174, 212}, {166, 220}, {16, 107}, {183, 204}, {167, 220}, {147, 232}, {44, 80}, {155, 231}, {53, 73}, {156, 225}, {157, 224}, {15, 113}, {176, 206}, {158, 224}, {32, 94}, {46, 81}, {157, 226}, {69, 197}, {99, 226}, {7, 132}, {12, 136}, {61, 185}, {14, 138}, {13, 137}, {86, 210}, {6, 131}, {66, 199}, {27, 158}, {73, 207}, {96, 230}, {97, 231}, {5, 130}, {70, 206}, {98, 232}, {10, 134}, {49, 189}, {29, 145}, {28, 144}, {11, 135}, {97, 237}, {99, 239}, {8, 133}, {64, 205}, {71, 200}, {68, 212}, {69, 213}, {30, 140}, {35, 177}, {31, 141}, {57, 170}, {21, 129}, {29, 139}, {23, 128}, {41, 190}, {102, 241}, {93, 197}, {59, 162}, {55, 172}, {75, 208}, {86, 202}, {60, 161}, {77, 208}, {74, 212}, {78, 209}, {119, 232}, {119, 215}, {127, 223}, {121, 216}, {127, 222}, {123, 218}, {116, 214}, {122, 217}, {121, 221}, {125, 217}, {115, 214}, {98, 196}, {110, 201}, {110, 199}, {45, 135}, {113, 219}, {100, 206}, {108, 198}, {43, 128}, {47, 132}, {44, 129}, {46, 131}, {20, 186}, {114, 220}, {112, 222}, {33, 143}, {32, 142}, {45, 130}, {34, 146}, {36, 148}, {35, 147}, {85, 228}, {108, 221}, {112, 195}, {44, 152}, {63, 139}, {55, 131}, {85, 225}, {86, 226}, {48, 133}, {49, 134}, {84, 227}, {40, 144}, {92, 228}, {93, 229}, {51, 138}, {109, 212}, {50, 136}, {111, 213}, {50, 137}, {104, 211}, {41, 149}, {43, 151}, {42, 150}, {108, 211}, {24, 216}, {126, 190}, {26, 218}, {25, 217}, {22, 215}, {103, 164}, {18, 214}, {125, 185}, {19, 214}, {31, 217}, {116, 178}, {89, 159}, {104, 174}, {105, 175}, {101, 162}, {80, 152}, {116, 188}, {83, 155}, {85, 156}, {87, 158}, {96, 169}, {108, 165}, {64, 138}, {76, 134}, {91, 145}, {102, 172}, {103, 173}, {86, 157}, {44, 224}, {67, 143}, {66, 142}, {65, 141}, {64, 140}, {111, 163}, {88, 149}, {100, 170}, {125, 179}, {101, 171}, {80, 159}, {119, 184}, {117, 186}, {68, 144}, {71, 147}, {70, 146}, {69, 145}, {61, 235}, {77, 149}, {78, 150}, {79, 151}, {106, 176}, {107, 177}, {66, 153}, {72, 148}, {76, 144}, {91, 135}, {104, 180}, {71, 154}, {88, 133}, {106, 181}, {117, 170}, {67, 163}, {72, 168}, {97, 130}, {105, 143}, {76, 171}, {91, 179}, {47, 197}, {68, 174}, {75, 161}, {87, 189}, {88, 178}, {98, 137}, {99, 136}, {102, 141}, {97, 140}, {62, 209}, {79, 160}, {58, 202}, {77, 189}, {81, 161}, {82, 162}, {83, 163}, {84, 164}, {85, 165}, {104, 152}, {56, 201}, {98, 147}, {99, 146}, {100, 150}, {52, 199}, {63, 204}, {112, 132}, {42, 223}, {62, 203}, {105, 156}, {57, 207}, {70, 176}, {63, 201}, {91, 173}, {54, 193}, {118, 129}, {88, 175}, {95, 168}, {36, 220}, {120, 128}, {37, 221}, {78, 182}, {39, 222}, {33, 219}, {53, 207}, {90, 160}, {92, 166}, {93, 167}, {58, 193}, {43, 215}, {102, 154}, {54, 200}, {112, 142}, {101, 155}, {105, 151} }>;

(II) A more general form is to represent the graph as the orbit of {166, 167} under the group generated by the following permutations:

a: (2, 6)(3, 144)(4, 14)(7, 68)(8, 61)(9, 56)(10, 57)(11, 97)(13, 99)(15, 46)(16, 40)(17, 51)(19, 28)(20, 27)(21, 201)(22, 23)(24, 231)(26, 226)(29, 44)(30, 202)(31, 32)(33, 228)(34, 81)(35, 36)(37, 101)(38, 222)(39, 106)(41, 42)(45, 130)(47, 174)(48, 185)(49, 170)(50, 136)(52, 131)(53, 76)(54, 138)(55, 110)(58, 140)(60, 146)(62, 116)(63, 129)(64, 193)(65, 142)(66, 141)(67, 165)(69, 152)(70, 161)(71, 148)(72, 147)(73, 171)(74, 112)(75, 176)(77, 150)(78, 149)(80, 145)(82, 162)(83, 221)(84, 181)(85, 143)(86, 123)(87, 117)(88, 182)(89, 179)(90, 160)(91, 159)(92, 113)(93, 180)(94, 125)(95, 232)(96, 183)(98, 168)(100, 189)(102, 153)(103, 184)(104, 197)(105, 156)(107, 114)(108, 163)(109, 195)(111, 198)(115, 214)(118, 204)(119, 120)(121, 155)(122, 217)(124, 210)(126, 127)(128, 215)(132, 212)(133, 235)(134, 207)(135, 237)(137, 239)(139, 224)(154, 238)(157, 218)(158, 186)(164, 242)(166, 219)(167, 187)(169, 243)(172, 199)(173, 233)(175, 225)(177, 220)(178, 209)(188, 203)(190, 223)(191, 194)(192, 216)(196, 234)(200, 205)(206, 208)(211, 213)(227, 229)(230, 236)(240, 241)
b: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 25)(10, 30)(11, 34)(13, 40)(14, 43)(15, 45)(16, 23)(17, 50)(19, 55)(20, 59)(22, 64)(24, 70)(26, 76)(27, 79)(28, 81)(29, 83)(31, 88)(32, 89)(33, 91)(35, 95)(36, 98)(37, 100)(38, 41)(39, 104)(42, 108)(44, 112)(46, 115)(47, 118)(48, 122)(49, 124)(51, 128)(52, 130)(53, 57)(54, 136)(56, 140)(58, 146)(60, 144)(61, 151)(62, 92)(63, 155)(65, 149)(66, 159)(67, 145)(68, 161)(69, 163)(71, 168)(72, 147)(73, 170)(74, 77)(75, 174)(78, 165)(80, 142)(82, 117)(84, 180)(85, 182)(87, 90)(93, 96)(97, 110)(99, 193)(101, 139)(102, 188)(103, 177)(105, 185)(106, 190)(107, 120)(109, 189)(111, 197)(113, 135)(114, 137)(116, 172)(119, 205)(121, 206)(123, 134)(125, 175)(127, 211)(129, 132)(131, 214)(133, 217)(138, 215)(141, 178)(143, 179)(148, 232)(150, 221)(152, 222)(153, 233)(154, 234)(156, 235)(157, 210)(158, 160)(162, 186)(164, 187)(166, 203)(167, 169)(171, 218)(173, 219)(176, 216)(181, 191)(183, 194)(184, 238)(192, 204)(195, 224)(196, 220)(198, 223)(199, 237)(200, 239)(201, 231)(202, 226)(208, 212)(209, 228)(229, 230)(240, 242)(241, 243)
c: (1, 2)(3, 32)(4, 27)(5, 15)(7, 142)(8, 14)(9, 141)(10, 144)(11, 146)(12, 37)(13, 165)(16, 94)(17, 87)(18, 52)(19, 66)(20, 61)(21, 102)(22, 68)(23, 65)(24, 99)(25, 73)(26, 85)(28, 56)(29, 78)(30, 105)(31, 57)(33, 97)(34, 45)(35, 80)(36, 77)(38, 120)(39, 93)(40, 49)(41, 72)(42, 69)(43, 109)(44, 71)(47, 222)(48, 51)(50, 221)(53, 122)(54, 158)(55, 172)(58, 226)(59, 82)(60, 228)(62, 201)(63, 209)(64, 175)(67, 231)(70, 135)(74, 128)(75, 167)(76, 134)(79, 90)(81, 92)(83, 155)(84, 229)(86, 202)(88, 205)(89, 107)(91, 206)(95, 126)(96, 236)(98, 211)(100, 179)(103, 106)(104, 232)(108, 137)(110, 115)(111, 194)(112, 132)(113, 130)(114, 189)(116, 153)(117, 185)(118, 241)(119, 174)(121, 136)(123, 156)(124, 151)(125, 170)(127, 197)(129, 154)(133, 138)(139, 182)(140, 143)(145, 150)(147, 152)(148, 149)(157, 193)(159, 177)(161, 166)(163, 192)(164, 181)(168, 190)(169, 183)(173, 176)(178, 238)(180, 184)(186, 235)(187, 233)(188, 240)(191, 234)(196, 198)(199, 214)(200, 224)(203, 204)(207, 217)(208, 220)(212, 215)(213, 223)(216, 239)(218, 225)(219, 237)(227, 242)(230, 243)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 243, 28 ]
243
-1 2 5 6 18
-2 1 15 6 52
-3 16 7 19 53
-4 17 8 20 54
-5 1 45 18 130
-6 1 2 46 131
-7 132 3 47 19
-8 133 4 48 20
-9 55 23 57 21
-10 22 56 134 49
-11 45 24 58 135
-12 25 59 136 50
-13 26 60 137 50
-14 27 61 138 51
-15 34 2 113 52
-16 3 51 107 53
-17 4 114 40 54
-18 1 5 115 214
-19 3 214 116 7
-20 4 117 8 186
-21 55 118 129 9
-22 56 215 119 10
-23 57 128 9 120
-24 11 121 58 216
-25 12 122 59 217
-26 13 123 60 218
-27 14 158 61 87
-28 144 68 115 62
-29 145 69 139 63
-30 123 124 140 64
-31 125 217 141 65
-32 66 122 94 142
-33 143 67 113 219
-34 113 146 15 70
-35 177 147 71 107
-36 220 114 148 72
-37 121 221 82 73
-38 126 106 74 65
-39 222 127 84 75
-40 144 114 17 76
-41 77 190 126 149
-42 78 223 127 150
-43 79 215 128 151
-44 80 224 129 152
-45 11 135 5 130
-46 81 92 6 131
-47 132 93 7 197
-48 89 133 94 8
-49 134 189 10 87
-50 12 13 136 137
-51 14 16 138 107
-52 110 199 2 15
-53 3 16 73 207
-54 200 4 17 193
-55 172 9 21 131
-56 22 110 201 10
-57 23 170 9 207
-58 11 24 202 193
-59 12 25 82 162
-60 13 26 81 161
-61 14 235 27 185
-62 209 115 203 28
-63 201 204 29 139
-64 138 205 30 140
-65 38 74 31 141
-66 199 32 142 153
-67 33 143 83 163
-68 144 212 28 174
-69 145 213 29 197
-70 176 34 146 206
-71 154 35 200 147
-72 36 168 148 95
-73 37 82 53 207
-74 212 38 65 109
-75 39 84 161 208
-76 144 134 171 40
-77 189 149 41 208
-78 209 182 150 42
-79 90 160 151 43
-80 44 89 159 152
-81 46 92 60 161
-82 37 59 73 162
-83 67 155 101 163
-84 39 227 75 164
-85 165 156 225 228
-86 210 157 202 226
-87 189 158 27 49
-88 133 178 149 175
-89 80 48 159 94
-90 79 124 160 109
-91 145 135 179 173
-92 166 46 81 228
-93 167 47 229 197
-94 89 122 48 32
-95 168 103 72 120
-96 111 169 118 230
-97 231 237 140 130
-98 232 147 137 196
-99 146 136 226 239
-100 170 117 150 206
-101 155 83 171 162
-102 154 172 141 241
-103 95 173 120 164
-104 211 180 152 174
-105 143 156 151 175
-106 176 38 126 181
-107 177 35 16 51
-108 165 198 221 211
-109 90 124 212 74
-110 56 199 201 52
-111 213 96 118 163
-112 132 222 195 142
-113 33 34 15 219
-114 220 36 17 40
-115 214 28 18 62
-116 188 178 214 19
-117 100 170 20 186
-118 111 96 129 21
-119 22 232 215 184
-120 23 103 95 128
-121 221 24 37 216
-122 25 94 217 32
-123 124 26 30 218
-124 90 123 30 109
-125 179 217 31 185
-126 190 38 106 41
-127 222 223 39 42
-128 23 215 43 120
-129 44 224 118 21
-130 45 5 237 97
-131 55 46 6 172
-132 112 47 7 195
-133 88 48 8 175
-134 49 171 10 76
-135 11 45 91 173
-136 99 12 50 239
-137 13 50 196 98
-138 14 51 205 64
-139 29 63 218 186
-140 231 30 64 97
-141 102 172 31 65
-142 66 112 222 32
-143 33 67 105 175
-144 68 28 40 76
-145 69 91 179 29
-146 99 34 70 226
-147 232 35 71 98
-148 36 72 205 238
-149 77 88 178 41
-150 78 100 206 42
-151 79 156 105 43
-152 44 211 80 104
-153 66 199 238 240
-154 200 102 71 241
-155 231 101 192 83
-156 225 105 85 151
-157 158 224 226 86
-158 157 224 27 87
-159 89 233 80 237
-160 210 79 90 195
-161 81 60 75 208
-162 101 59 82 171
-163 67 111 213 83
-164 103 84 227 173
-165 221 85 228 108
-166 220 167 92 228
-167 220 166 93 229
-168 234 72 95 239
-169 203 96 196 230
-170 100 57 117 207
-171 101 134 162 76
-172 55 102 141 131
-173 91 135 103 164
-174 68 212 180 104
-175 88 143 133 105
-176 70 181 106 206
-177 187 35 107 219
-178 88 188 116 149
-179 145 91 125 185
-180 187 104 227 174
-181 176 242 106 229
-182 209 78 235 225
-183 198 243 236 204
-184 242 232 233 119
-185 179 125 235 61
-186 117 139 20 218
-187 177 180 227 219
-188 243 178 234 116
-189 77 49 87 208
-190 191 126 216 41
-191 190 216 240 230
-192 231 155 223 194
-193 200 58 202 54
-194 223 192 236 241
-195 132 210 112 160
-196 169 137 203 98
-197 47 69 213 93
-198 211 204 183 108
-199 66 110 52 153
-200 154 71 193 54
-201 110 56 204 63
-202 210 58 193 86
-203 209 169 62 196
-204 198 201 183 63
-205 148 138 238 64
-206 176 100 70 150
-207 57 170 73 53
-208 77 189 161 75
-209 78 203 182 62
-210 202 160 195 86
-211 198 104 108 152
-212 68 74 174 109
-213 111 69 163 197
-214 115 116 18 19
-215 22 128 119 43
-216 121 24 190 191
-217 122 25 125 31
-218 123 26 139 186
-219 33 187 177 113
-220 166 167 36 114
-221 121 165 37 108
-222 112 39 127 142
-223 192 127 194 42
-224 44 157 158 129
-225 156 235 182 85
-226 99 146 157 86
-227 187 180 84 164
-228 165 166 92 85
-229 242 167 93 181
-230 169 191 96 240
-231 155 192 140 97
-232 147 184 119 98
-233 242 159 237 184
-234 188 243 168 239
-235 225 61 182 185
-236 243 183 194 241
-237 233 159 97 130
-238 148 205 240 153
-239 99 168 234 136
-240 191 238 153 230
-241 154 102 236 194
-242 233 181 184 229
-243 188 234 236 183
0

**************