[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 243, 30 ] =
UG(Cmap(486,13){12,4|9}_18).
(I) Following is a form readable by MAGMA:
g:=Graph<243|{ {2, 3}, {238, 239}, {216, 217}, {200, 201}, {158, 159}, {152,
153}, {142, 143}, {116, 117}, {4, 6}, {221, 223}, {132, 134}, {1, 2}, {240,
243}, {9, 13}, {32, 36}, {1, 4}, {19, 22}, {10, 15}, {8, 13}, {1, 7}, {218,
220}, {209, 215}, {186, 188}, {49, 55}, {16, 22}, {3, 5}, {9, 14}, {235, 236},
{208, 215}, {192, 199}, {16, 24}, {229, 237}, {225, 233}, {224, 232}, {18, 26},
{17, 25}, {198, 207}, {226, 235}, {20, 30}, {196, 206}, {177, 187}, {50, 56},
{1, 10}, {208, 219}, {7, 11}, {229, 233}, {5, 8}, {231, 234}, {228, 233}, {224,
237}, {98, 111}, {2, 12}, {228, 234}, {213, 219}, {19, 29}, {6, 9}, {32, 47},
{3, 19}, {174, 190}, {4, 20}, {129, 145}, {33, 48}, {170, 187}, {37, 55}, {200,
218}, {164, 182}, {65, 83}, {64, 82}, {45, 63}, {44, 62}, {41, 59}, {40, 58},
{39, 53}, {2, 17}, {167, 180}, {166, 181}, {195, 215}, {109, 120}, {111, 122},
{42, 60}, {43, 61}, {34, 53}, {193, 214}, {72, 95}, {110, 121}, {135, 144}, {3,
27}, {235, 243}, {233, 241}, {206, 214}, {69, 93}, {68, 92}, {67, 91}, {66, 90},
{65, 89}, {64, 88}, {15, 23}, {14, 22}, {13, 21}, {4, 28}, {71, 94}, {198, 223},
{168, 177}, {77, 84}, {97, 120}, {5, 31}, {232, 242}, {207, 213}, {72, 82}, {15,
21}, {11, 16}, {197, 222}, {162, 190}, {197, 217}, {37, 56}, {106, 119}, {12,
18}, {239, 241}, {238, 240}, {236, 242}, {41, 55}, {40, 54}, {39, 57}, {38, 56},
{76, 83}, {105, 118}, {150, 182}, {86, 119}, {210, 243}, {151, 182}, {149, 180},
{147, 178}, {145, 176}, {88, 121}, {92, 125}, {94, 127}, {8, 42}, {193, 227},
{141, 175}, {140, 174}, {78, 108}, {80, 114}, {131, 161}, {85, 118}, {155, 184},
{150, 181}, {146, 177}, {89, 122}, {93, 126}, {128, 163}, {76, 104}, {214, 242},
{158, 186}, {136, 172}, {19, 54}, {156, 185}, {81, 116}, {6, 32}, {7, 33}, {77,
107}, {139, 173}, {91, 124}, {199, 224}, {154, 189}, {148, 179}, {133, 162},
{94, 118}, {203, 227}, {95, 119}, {128, 168}, {135, 175}, {73, 96}, {75, 98},
{77, 100}, {91, 114}, {93, 116}, {131, 170}, {6, 44}, {203, 225}, {192, 234},
{7, 45}, {74, 97}, {130, 169}, {31, 51}, {85, 121}, {86, 122}, {136, 164}, {137,
165}, {134, 171}, {139, 166}, {5, 43}, {153, 183}, {80, 126}, {87, 120}, {222,
241}, {92, 115}, {129, 174}, {87, 103}, {215, 231}, {31, 46}, {149, 164}, {74,
123}, {79, 125}, {23, 36}, {213, 230}, {23, 35}, {157, 169}, {156, 168}, {30,
42}, {29, 41}, {28, 40}, {21, 34}, {148, 163}, {146, 165}, {10, 50}, {72, 112},
{12, 52}, {11, 51}, {8, 49}, {209, 232}, {26, 35}, {25, 34}, {220, 231}, {212,
239}, {24, 36}, {222, 226}, {155, 167}, {154, 166}, {31, 35}, {27, 39}, {26,
38}, {25, 37}, {76, 113}, {221, 224}, {211, 238}, {90, 103}, {216, 230}, {217,
231}, {143, 176}, {220, 227}, {44, 108}, {176, 240}, {173, 237}, {172, 236},
{51, 115}, {14, 76}, {152, 218}, {13, 72}, {143, 202}, {48, 118}, {50, 117},
{181, 242}, {180, 243}, {142, 201}, {151, 223}, {47, 102}, {9, 67}, {12, 70},
{175, 228}, {14, 66}, {150, 219}, {10, 68}, {11, 69}, {58, 117}, {154, 203},
{183, 230}, {33, 114}, {132, 208}, {37, 114}, {146, 202}, {169, 240}, {20, 79},
{155, 192}, {17, 77}, {149, 201}, {148, 200}, {18, 78}, {129, 221}, {156, 193},
{141, 211}, {184, 230}, {147, 204}, {157, 194}, {133, 229}, {140, 236}, {138,
235}, {185, 216}, {179, 210}, {128, 226}, {179, 209}, {177, 211}, {52, 87},
{172, 207}, {160, 195}, {53, 86}, {30, 123}, {183, 210}, {170, 207}, {139, 238},
{54, 80}, {178, 212}, {171, 205}, {59, 93}, {136, 239}, {61, 85}, {63, 87}, {62,
86}, {58, 83}, {188, 213}, {173, 196}, {130, 232}, {57, 82}, {184, 211}, {15,
99}, {29, 112}, {185, 212}, {160, 205}, {140, 225}, {57, 84}, {46, 64}, {63,
81}, {62, 80}, {47, 65}, {30, 113}, {171, 196}, {142, 225}, {59, 84}, {32, 81},
{189, 204}, {188, 205}, {48, 66}, {61, 79}, {20, 103}, {28, 111}, {16, 100},
{18, 102}, {17, 101}, {23, 98}, {27, 110}, {24, 109}, {49, 71}, {24, 96}, {137,
241}, {51, 74}, {183, 206}, {180, 205}, {53, 79}, {165, 223}, {60, 70}, {50,
73}, {21, 105}, {176, 204}, {58, 70}, {22, 106}, {191, 194}, {147, 237}, {191,
193}, {174, 208}, {49, 78}, {52, 75}, {73, 201}, {74, 202}, {75, 203}, {99,
226}, {66, 192}, {69, 199}, {68, 198}, {56, 188}, {67, 198}, {97, 228}, {67,
197}, {54, 190}, {55, 191}, {84, 220}, {91, 210}, {60, 182}, {104, 227}, {29,
144}, {92, 209}, {40, 166}, {59, 181}, {83, 221}, {71, 200}, {89, 214}, {48,
160}, {61, 173}, {41, 184}, {62, 172}, {28, 143}, {42, 185}, {25, 140}, {52,
161}, {46, 187}, {27, 142}, {26, 141}, {45, 186}, {57, 161}, {65, 217}, {64,
216}, {94, 197}, {70, 218}, {71, 219}, {88, 199}, {122, 229}, {99, 195}, {39,
130}, {101, 195}, {107, 194}, {38, 138}, {33, 145}, {47, 159}, {46, 158}, {45,
157}, {44, 156}, {43, 155}, {95, 234}, {119, 194}, {34, 148}, {43, 157}, {36,
146}, {35, 149}, {98, 212}, {112, 202}, {38, 154}, {113, 204}, {96, 222}, {124,
189}, {82, 151}, {104, 162}, {100, 175}, {109, 160}, {127, 178}, {107, 187},
{115, 161}, {102, 178}, {124, 168}, {108, 186}, {126, 169}, {115, 171}, {123,
163}, {127, 167}, {73, 144}, {125, 164}, {89, 131}, {126, 165}, {68, 152}, {69,
153}, {123, 167}, {88, 134}, {116, 170}, {95, 128}, {99, 131}, {100, 132}, {101,
133}, {102, 134}, {96, 129}, {105, 136}, {107, 138}, {103, 133}, {97, 130},
{106, 137}, {110, 141}, {90, 191}, {108, 139}, {75, 163}, {112, 152}, {113,
153}, {90, 179}, {85, 190}, {78, 162}, {81, 189}, {124, 144}, {125, 145}, {104,
135}, {121, 137}, {63, 206}, {117, 132}, {120, 138}, {106, 159}, {105, 158},
{60, 196}, {110, 150}, {111, 151}, {127, 135}, {101, 159}, {109, 147} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 4, 7, 10)(3, 6, 11, 15)(5, 9, 16, 23)(8, 14, 24, 35)(12, 20, 33, 50)(13,
22, 36, 31)(17, 28, 45, 68)(18, 30, 48, 73)(19, 32, 51, 21)(25, 40, 63, 92)(26,
42, 66, 96)(27, 44, 69, 99)(29, 47, 74, 105)(34, 54, 81, 115)(37, 58, 87,
125)(38, 60, 90, 129)(39, 62, 93, 131)(41, 65, 97, 136)(43, 67, 100, 98)(46, 72,
106, 146)(49, 76, 109, 149)(52, 79, 114, 117)(53, 80, 116, 161)(55, 83, 120,
164)(56, 70, 103, 145)(57, 86, 126, 170)(59, 89, 130, 172)(61, 91, 132, 75)(64,
95, 137, 177)(71, 104, 147, 180)(77, 111, 157, 198)(78, 113, 160, 201)(82, 119,
165, 187)(84, 122, 169, 207)(85, 124, 134, 163)(88, 128, 121, 168)(94, 135, 178,
167)(101, 143, 186, 152)(102, 123, 118, 144)(107, 151, 194, 223)(108, 153, 195,
142)(110, 156, 199, 226)(112, 159, 202, 158)(133, 176, 188, 218)(138, 182, 191,
221)(139, 183, 215, 225)(140, 166, 206, 209)(141, 185, 192, 222)(148, 190, 189,
171)(150, 193, 224, 235)(154, 196, 179, 174)(155, 197, 175, 212)(162, 204, 205,
200)(173, 210, 208, 203)(181, 214, 232, 236)(184, 217, 228, 239)(211, 216, 234,
241)(213, 220, 229, 240)(219, 227, 237, 243)(230, 231, 233, 238) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 10)(4, 12)(5, 15)(6, 18)(7, 17)(8, 23)(9, 26)(11, 25)(13, 35)(14,
38)(16, 37)(19, 50)(20, 52)(21, 31)(22, 56)(24, 55)(27, 68)(28, 70)(29, 73)(30,
75)(32, 78)(33, 77)(34, 51)(36, 49)(39, 92)(40, 58)(41, 96)(42, 98)(43, 99)(44,
102)(45, 101)(46, 105)(47, 108)(48, 107)(53, 115)(54, 117)(57, 125)(59, 129)(60,
111)(61, 131)(62, 134)(63, 133)(64, 136)(65, 139)(66, 138)(67, 141)(69, 140)(71,
146)(72, 149)(74, 148)(76, 154)(79, 161)(80, 132)(81, 162)(82, 164)(83, 166)(84,
145)(85, 170)(86, 171)(87, 103)(88, 172)(89, 173)(90, 120)(91, 175)(93, 174)(94,
177)(95, 180)(97, 179)(100, 114)(104, 189)(106, 188)(109, 191)(110, 198)(112,
201)(113, 203)(116, 190)(118, 187)(119, 205)(121, 207)(122, 196)(123, 163)(124,
135)(126, 208)(127, 168)(128, 167)(130, 209)(137, 213)(142, 152)(143, 218)(147,
193)(150, 223)(151, 182)(153, 225)(155, 226)(156, 178)(157, 195)(159, 186)(160,
194)(165, 219)(169, 215)(176, 220)(181, 221)(183, 233)(184, 222)(185, 212)(192,
235)(197, 211)(199, 236)(200, 202)(204, 227)(206, 229)(210, 228)(214, 237)(216,
239)(217, 238)(224, 242)(230, 241)(231, 240)(234, 243)
C4[ 243, 30 ]
243
-1 2 4 7 10
-2 1 12 3 17
-3 2 5 27 19
-4 1 6 28 20
-5 3 8 31 43
-6 44 4 9 32
-7 11 33 1 45
-8 13 5 49 42
-9 67 13 14 6
-10 1 68 15 50
-11 69 16 7 51
-12 2 70 18 52
-13 72 8 9 21
-14 22 66 9 76
-15 99 23 10 21
-16 11 22 100 24
-17 77 2 101 25
-18 12 78 102 26
-19 22 3 29 54
-20 79 4 103 30
-21 34 13 15 105
-22 14 16 106 19
-23 35 36 15 98
-24 36 16 96 109
-25 34 37 17 140
-26 35 38 18 141
-27 110 3 39 142
-28 143 111 4 40
-29 144 112 19 41
-30 123 113 20 42
-31 35 46 5 51
-32 36 47 81 6
-33 145 48 114 7
-34 25 148 53 21
-35 23 26 149 31
-36 23 24 146 32
-37 55 56 25 114
-38 154 56 26 138
-39 57 27 53 130
-40 166 58 28 54
-41 55 59 29 184
-42 60 8 30 185
-43 155 157 5 61
-44 156 6 62 108
-45 157 7 63 186
-46 187 158 31 64
-47 102 159 32 65
-48 33 66 160 118
-49 55 78 71 8
-50 56 73 117 10
-51 11 115 74 31
-52 12 161 75 87
-53 34 79 39 86
-54 80 190 40 19
-55 37 191 49 41
-56 188 37 38 50
-57 82 39 84 161
-58 70 83 40 117
-59 93 181 84 41
-60 70 182 42 196
-61 79 85 173 43
-62 44 80 172 86
-63 45 81 206 87
-64 88 46 82 216
-65 89 47 83 217
-66 90 14 48 192
-67 198 91 9 197
-68 198 92 152 10
-69 11 199 93 153
-70 12 58 60 218
-71 200 49 94 219
-72 13 112 82 95
-73 144 201 50 96
-74 123 202 51 97
-75 203 52 163 98
-76 14 113 104 83
-77 100 17 84 107
-78 49 18 162 108
-79 125 61 20 53
-80 114 126 62 54
-81 189 116 63 32
-82 57 72 151 64
-83 221 58 65 76
-84 77 220 57 59
-85 121 190 61 118
-86 122 62 53 119
-87 103 52 63 120
-88 121 199 134 64
-89 122 214 65 131
-90 66 179 103 191
-91 67 210 124 114
-92 209 68 125 115
-93 69 59 126 116
-94 71 127 118 197
-95 234 72 128 119
-96 24 222 73 129
-97 74 228 130 120
-98 23 111 212 75
-99 15 226 195 131
-100 77 132 16 175
-101 133 159 17 195
-102 134 178 47 18
-103 133 90 20 87
-104 135 227 162 76
-105 136 158 118 21
-106 22 137 159 119
-107 77 187 138 194
-108 44 78 139 186
-109 24 147 160 120
-110 121 27 150 141
-111 122 28 151 98
-112 202 72 29 152
-113 204 30 76 153
-114 33 80 91 37
-115 92 171 51 161
-116 81 93 170 117
-117 132 58 50 116
-118 48 94 105 85
-119 95 106 194 86
-120 138 97 87 109
-121 88 110 137 85
-122 89 111 86 229
-123 167 30 74 163
-124 144 189 91 168
-125 79 145 92 164
-126 165 80 169 93
-127 167 178 135 94
-128 168 226 95 163
-129 221 145 96 174
-130 232 169 39 97
-131 99 89 170 161
-132 100 134 117 208
-133 101 103 162 229
-134 88 132 102 171
-135 144 104 127 175
-136 105 172 239 164
-137 121 165 106 241
-138 235 38 107 120
-139 166 238 173 108
-140 25 225 236 174
-141 110 211 26 175
-142 143 201 27 225
-143 176 202 28 142
-144 124 135 29 73
-145 33 176 125 129
-146 165 177 36 202
-147 178 204 237 109
-148 34 200 179 163
-149 35 201 180 164
-150 110 181 182 219
-151 111 223 82 182
-152 68 112 218 153
-153 69 113 183 152
-154 166 189 38 203
-155 167 192 184 43
-156 44 168 193 185
-157 45 169 194 43
-158 46 159 105 186
-159 101 47 158 106
-160 48 205 195 109
-161 57 115 52 131
-162 78 133 190 104
-163 123 148 128 75
-164 125 136 149 182
-165 146 223 126 137
-166 154 181 40 139
-167 155 123 180 127
-168 177 156 124 128
-169 157 126 130 240
-170 187 116 207 131
-171 134 115 205 196
-172 136 236 62 207
-173 61 237 139 196
-174 190 129 140 208
-175 100 135 228 141
-176 143 145 204 240
-177 187 211 146 168
-178 102 212 147 127
-179 209 210 90 148
-180 243 167 149 205
-181 242 166 59 150
-182 60 150 151 164
-183 210 206 153 230
-184 155 211 41 230
-185 156 212 216 42
-186 45 188 158 108
-187 177 46 170 107
-188 56 213 205 186
-189 154 124 81 204
-190 85 162 174 54
-191 55 90 193 194
-192 66 155 199 234
-193 156 191 214 227
-194 157 191 107 119
-195 99 101 160 215
-196 60 171 173 206
-197 67 222 94 217
-198 67 68 223 207
-199 88 69 224 192
-200 201 71 148 218
-201 200 149 73 142
-202 143 112 146 74
-203 154 225 227 75
-204 176 189 113 147
-205 188 180 160 171
-206 214 183 63 196
-207 198 213 170 172
-208 132 215 174 219
-209 232 179 92 215
-210 243 91 179 183
-211 177 238 184 141
-212 178 239 185 98
-213 188 207 219 230
-214 242 89 193 206
-215 209 231 195 208
-216 217 64 185 230
-217 231 216 65 197
-218 220 200 70 152
-219 213 71 150 208
-220 231 84 227 218
-221 223 224 83 129
-222 226 96 197 241
-223 165 198 221 151
-224 199 221 232 237
-225 233 203 140 142
-226 99 222 235 128
-227 220 104 203 193
-228 233 234 97 175
-229 122 133 233 237
-230 213 183 216 184
-231 220 234 215 217
-232 209 242 224 130
-233 225 228 229 241
-234 231 192 95 228
-235 243 236 138 226
-236 242 235 172 140
-237 147 224 173 229
-238 211 139 239 240
-239 212 136 238 241
-240 176 243 169 238
-241 222 233 137 239
-242 232 181 214 236
-243 210 180 235 240
0