[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 244, 2 ] =
{4,4}_12,10.
(I) Following is a form readable by MAGMA:
g:=Graph<244|{ {2, 3}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234,
235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223},
{220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197},
{194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156,
157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145},
{142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130,
131}, {128, 129}, {126, 127}, {124, 125}, {120, 121}, {118, 119}, {116, 117},
{114, 115}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81},
{82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97},
{98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110,
111}, {112, 113}, {1, 2}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225,
226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202},
{197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173,
174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150},
{145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121,
122}, {117, 118}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50},
{45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90},
{93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {3, 4},
{243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195,
196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{139, 140}, {131, 132}, {123, 124}, {115, 116}, {67, 68}, {59, 60}, {51, 52},
{43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92},
{99, 100}, {107, 108}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184},
{167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23, 24}, {39, 40},
{71, 72}, {87, 88}, {103, 104}, {15, 16}, {239, 240}, {207, 208}, {175, 176},
{143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160},
{95, 96}, {24, 124}, {25, 125}, {26, 126}, {27, 127}, {23, 123}, {1, 123}, {4,
126}, {5, 127}, {1, 122}, {2, 124}, {3, 125}, {63, 64}, {191, 192}, {6, 128},
{119, 241}, {118, 240}, {63, 185}, {62, 184}, {55, 177}, {54, 176}, {47, 169},
{46, 168}, {7, 129}, {14, 136}, {15, 137}, {22, 144}, {23, 145}, {30, 152}, {31,
153}, {38, 160}, {39, 161}, {70, 192}, {71, 193}, {78, 200}, {79, 201}, {86,
208}, {87, 209}, {94, 216}, {95, 217}, {102, 224}, {103, 225}, {110, 232}, {111,
233}, {8, 130}, {121, 243}, {120, 242}, {61, 183}, {60, 182}, {57, 179}, {56,
178}, {45, 167}, {44, 166}, {9, 131}, {12, 134}, {13, 135}, {24, 146}, {25,
147}, {28, 150}, {29, 151}, {40, 162}, {41, 163}, {72, 194}, {73, 195}, {76,
198}, {77, 199}, {88, 210}, {89, 211}, {92, 214}, {93, 215}, {104, 226}, {105,
227}, {108, 230}, {109, 231}, {10, 132}, {122, 244}, {59, 181}, {58, 180}, {43,
165}, {42, 164}, {11, 133}, {26, 148}, {27, 149}, {74, 196}, {75, 197}, {90,
212}, {91, 213}, {106, 228}, {107, 229}, {123, 244}, {16, 138}, {117, 239},
{116, 238}, {53, 175}, {52, 174}, {49, 171}, {48, 170}, {17, 139}, {20, 142},
{21, 143}, {80, 202}, {81, 203}, {84, 206}, {85, 207}, {112, 234}, {113, 235},
{28, 128}, {63, 163}, {62, 162}, {61, 161}, {60, 160}, {29, 129}, {30, 130},
{31, 131}, {92, 192}, {93, 193}, {94, 194}, {95, 195}, {18, 140}, {115, 237},
{114, 236}, {51, 173}, {50, 172}, {19, 141}, {82, 204}, {83, 205}, {32, 132},
{122, 222}, {121, 221}, {120, 220}, {115, 215}, {114, 214}, {59, 159}, {58,
158}, {57, 157}, {56, 156}, {51, 151}, {50, 150}, {49, 149}, {48, 148}, {43,
143}, {42, 142}, {33, 133}, {34, 134}, {35, 135}, {40, 140}, {41, 141}, {96,
196}, {97, 197}, {98, 198}, {99, 199}, {104, 204}, {105, 205}, {106, 206}, {107,
207}, {112, 212}, {113, 213}, {36, 136}, {119, 219}, {118, 218}, {117, 217},
{116, 216}, {55, 155}, {54, 154}, {53, 153}, {52, 152}, {37, 137}, {38, 138},
{39, 139}, {100, 200}, {101, 201}, {102, 202}, {103, 203}, {32, 154}, {33, 155},
{36, 158}, {37, 159}, {96, 218}, {97, 219}, {100, 222}, {101, 223}, {44, 144},
{47, 147}, {46, 146}, {45, 145}, {108, 208}, {109, 209}, {110, 210}, {111, 211},
{34, 156}, {35, 157}, {98, 220}, {99, 221}, {1, 223}, {2, 224}, {3, 225}, {6,
228}, {7, 229}, {10, 232}, {11, 233}, {14, 236}, {15, 237}, {18, 240}, {19,
241}, {22, 244}, {64, 164}, {67, 167}, {66, 166}, {65, 165}, {72, 172}, {73,
173}, {74, 174}, {75, 175}, {80, 180}, {81, 181}, {82, 182}, {83, 183}, {88,
188}, {89, 189}, {90, 190}, {91, 191}, {4, 226}, {5, 227}, {12, 234}, {13, 235},
{20, 242}, {21, 243}, {68, 168}, {69, 169}, {70, 170}, {71, 171}, {84, 184},
{85, 185}, {86, 186}, {87, 187}, {8, 230}, {9, 231}, {64, 186}, {68, 190}, {65,
187}, {69, 191}, {76, 176}, {77, 177}, {78, 178}, {79, 179}, {16, 238}, {67,
189}, {66, 188}, {17, 239}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 123, 122, 223)(3, 23, 121, 101)(4, 145, 120, 201)(5, 45, 119, 79)(6, 167,
118, 179)(7, 67, 117, 57)(8, 189, 116, 157)(9, 89, 115, 35)(10, 211, 114,
135)(11, 111, 113, 13)(12, 233, 112, 235)(14, 133, 110, 213)(15, 33, 109,
91)(16, 155, 108, 191)(17, 55, 107, 69)(18, 177, 106, 169)(19, 77, 105, 47)(20,
199, 104, 147)(21, 99, 103, 25)(22, 221, 102, 125)(24, 243, 100, 225)(26, 143,
98, 203)(27, 43, 97, 81)(28, 165, 96, 181)(29, 65, 95, 59)(30, 187, 94, 159)(31,
87, 93, 37)(32, 209, 92, 137)(34, 231, 90, 237)(36, 131, 88, 215)(38, 153, 86,
193)(39, 53, 85, 71)(40, 175, 84, 171)(41, 75, 83, 49)(42, 197, 82, 149)(44,
219, 80, 127)(46, 241, 78, 227)(48, 141, 76, 205)(50, 163, 74, 183)(51, 63, 73,
61)(52, 185, 72, 161)(54, 207, 70, 139)(56, 229, 68, 239)(58, 129, 66, 217)(60,
151, 64, 195)(62, 173)(124, 244, 222, 224)(126, 144, 220, 202)(128, 166, 218,
180)(130, 188, 216, 158)(132, 210, 214, 136)(134, 232, 212, 236)(138, 154, 208,
192)(140, 176, 206, 170)(142, 198, 204, 148)(146, 242, 200, 226)(150, 164, 196,
182)(152, 186, 194, 160)(156, 230, 190, 238)(162, 174, 184, 172)(168, 240, 178,
228) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 122)(3, 121)(4, 120)(5, 119)(6, 118)(7, 117)(8, 116)(9, 115)(10, 114)(11,
113)(12, 112)(13, 111)(14, 110)(15, 109)(16, 108)(17, 107)(18, 106)(19, 105)(20,
104)(21, 103)(22, 102)(23, 101)(24, 100)(25, 99)(26, 98)(27, 97)(28, 96)(29,
95)(30, 94)(31, 93)(32, 92)(33, 91)(34, 90)(35, 89)(36, 88)(37, 87)(38, 86)(39,
85)(40, 84)(41, 83)(42, 82)(43, 81)(44, 80)(45, 79)(46, 78)(47, 77)(48, 76)(49,
75)(50, 74)(51, 73)(52, 72)(53, 71)(54, 70)(55, 69)(56, 68)(57, 67)(58, 66)(59,
65)(60, 64)(61, 63)(123, 223)(124, 222)(125, 221)(126, 220)(127, 219)(128,
218)(129, 217)(130, 216)(131, 215)(132, 214)(133, 213)(134, 212)(135, 211)(136,
210)(137, 209)(138, 208)(139, 207)(140, 206)(141, 205)(142, 204)(143, 203)(144,
202)(145, 201)(146, 200)(147, 199)(148, 198)(149, 197)(150, 196)(151, 195)(152,
194)(153, 193)(154, 192)(155, 191)(156, 190)(157, 189)(158, 188)(159, 187)(160,
186)(161, 185)(162, 184)(163, 183)(164, 182)(165, 181)(166, 180)(167, 179)(168,
178)(169, 177)(170, 176)(171, 175)(172, 174)(224, 244)(225, 243)(226, 242)(227,
241)(228, 240)(229, 239)(230, 238)(231, 237)(232, 236)(233, 235)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122)(123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244)
C4[ 244, 2 ]
244
-1 122 2 123 223
-2 1 3 124 224
-3 2 4 125 225
-4 3 5 126 226
-5 4 6 127 227
-6 5 7 128 228
-7 6 8 129 229
-8 7 9 130 230
-9 231 8 10 131
-10 11 132 232 9
-11 12 133 233 10
-12 11 13 134 234
-13 12 14 135 235
-14 13 15 136 236
-15 14 16 137 237
-16 15 17 138 238
-17 16 18 139 239
-18 17 19 140 240
-19 18 20 141 241
-20 242 19 21 142
-21 22 143 243 20
-22 23 144 244 21
-23 22 24 123 145
-24 23 25 124 146
-25 24 26 125 147
-26 25 27 126 148
-27 26 28 127 149
-28 27 29 128 150
-29 28 30 129 151
-30 29 31 130 152
-31 30 32 131 153
-32 33 132 154 31
-33 34 133 155 32
-34 33 35 134 156
-35 34 36 135 157
-36 35 37 136 158
-37 36 38 137 159
-38 37 39 138 160
-39 38 40 139 161
-40 39 41 140 162
-41 40 42 141 163
-42 41 43 142 164
-43 44 143 165 42
-44 45 144 166 43
-45 44 46 145 167
-46 45 47 146 168
-47 46 48 147 169
-48 47 49 148 170
-49 48 50 149 171
-50 49 51 150 172
-51 50 52 151 173
-52 51 53 152 174
-53 52 54 153 175
-54 55 154 176 53
-55 56 155 177 54
-56 55 57 156 178
-57 56 58 157 179
-58 57 59 158 180
-59 58 60 159 181
-60 59 61 160 182
-61 60 62 161 183
-62 61 63 162 184
-63 62 64 163 185
-64 63 65 164 186
-65 66 165 187 64
-66 67 166 188 65
-67 66 68 167 189
-68 67 69 168 190
-69 68 70 169 191
-70 69 71 170 192
-71 70 72 171 193
-72 71 73 172 194
-73 72 74 173 195
-74 73 75 174 196
-75 74 76 175 197
-76 77 176 198 75
-77 78 177 199 76
-78 77 79 178 200
-79 78 80 179 201
-80 79 81 180 202
-81 80 82 181 203
-82 81 83 182 204
-83 82 84 183 205
-84 83 85 184 206
-85 84 86 185 207
-86 85 87 186 208
-87 88 187 209 86
-88 89 188 210 87
-89 88 90 189 211
-90 89 91 190 212
-91 90 92 191 213
-92 91 93 192 214
-93 92 94 193 215
-94 93 95 194 216
-95 94 96 195 217
-96 95 97 196 218
-97 96 98 197 219
-98 99 198 220 97
-99 100 199 221 98
-100 99 101 200 222
-101 100 102 201 223
-102 101 103 202 224
-103 102 104 203 225
-104 103 105 204 226
-105 104 106 205 227
-106 105 107 206 228
-107 106 108 207 229
-108 107 109 208 230
-109 110 209 231 108
-110 111 210 232 109
-111 110 112 211 233
-112 111 113 212 234
-113 112 114 213 235
-114 113 115 214 236
-115 114 116 215 237
-116 115 117 216 238
-117 116 118 217 239
-118 117 119 218 240
-119 118 120 219 241
-120 121 220 242 119
-121 122 221 243 120
-122 121 1 222 244
-123 1 23 244 124
-124 2 24 123 125
-125 3 25 124 126
-126 4 26 125 127
-127 5 27 126 128
-128 6 28 127 129
-129 7 29 128 130
-130 8 30 129 131
-131 132 9 31 130
-132 133 10 32 131
-133 11 33 132 134
-134 12 34 133 135
-135 13 35 134 136
-136 14 36 135 137
-137 15 37 136 138
-138 16 38 137 139
-139 17 39 138 140
-140 18 40 139 141
-141 19 41 140 142
-142 143 20 42 141
-143 144 21 43 142
-144 22 44 143 145
-145 23 45 144 146
-146 24 46 145 147
-147 25 47 146 148
-148 26 48 147 149
-149 27 49 148 150
-150 28 50 149 151
-151 29 51 150 152
-152 30 52 151 153
-153 154 31 53 152
-154 155 32 54 153
-155 33 55 154 156
-156 34 56 155 157
-157 35 57 156 158
-158 36 58 157 159
-159 37 59 158 160
-160 38 60 159 161
-161 39 61 160 162
-162 40 62 161 163
-163 41 63 162 164
-164 165 42 64 163
-165 166 43 65 164
-166 44 66 165 167
-167 45 67 166 168
-168 46 68 167 169
-169 47 69 168 170
-170 48 70 169 171
-171 49 71 170 172
-172 50 72 171 173
-173 51 73 172 174
-174 52 74 173 175
-175 176 53 75 174
-176 177 54 76 175
-177 55 77 176 178
-178 56 78 177 179
-179 57 79 178 180
-180 58 80 179 181
-181 59 81 180 182
-182 60 82 181 183
-183 61 83 182 184
-184 62 84 183 185
-185 63 85 184 186
-186 187 64 86 185
-187 188 65 87 186
-188 66 88 187 189
-189 67 89 188 190
-190 68 90 189 191
-191 69 91 190 192
-192 70 92 191 193
-193 71 93 192 194
-194 72 94 193 195
-195 73 95 194 196
-196 74 96 195 197
-197 198 75 97 196
-198 199 76 98 197
-199 77 99 198 200
-200 78 100 199 201
-201 79 101 200 202
-202 80 102 201 203
-203 81 103 202 204
-204 82 104 203 205
-205 83 105 204 206
-206 84 106 205 207
-207 85 107 206 208
-208 209 86 108 207
-209 210 87 109 208
-210 88 110 209 211
-211 89 111 210 212
-212 90 112 211 213
-213 91 113 212 214
-214 92 114 213 215
-215 93 115 214 216
-216 94 116 215 217
-217 95 117 216 218
-218 96 118 217 219
-219 220 97 119 218
-220 221 98 120 219
-221 99 121 220 222
-222 100 122 221 223
-223 1 101 222 224
-224 2 102 223 225
-225 3 103 224 226
-226 4 104 225 227
-227 5 105 226 228
-228 6 106 227 229
-229 7 107 228 230
-230 231 8 108 229
-231 232 9 109 230
-232 110 231 233 10
-233 11 111 232 234
-234 12 112 233 235
-235 13 113 234 236
-236 14 114 235 237
-237 15 115 236 238
-238 16 116 237 239
-239 17 117 238 240
-240 18 118 239 241
-241 242 19 119 240
-242 243 20 120 241
-243 121 242 244 21
-244 22 122 243 123
0