[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 245, 1 ] =
C_245(1,99).
(I) Following is a form readable by MAGMA:
g:=Graph<245|{ {2, 3}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236,
237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225},
{222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210,
211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199},
{196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184,
185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173},
{170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158,
159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147},
{144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132,
133}, {130, 131}, {128, 129}, {126, 127}, {70, 71}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48,
49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91},
{92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {1, 2}, {241, 242}, {237, 238}, {233,
234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210},
{205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181,
182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158},
{153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129,
130}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37,
38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97,
98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122},
{125, 126}, {3, 4}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212},
{203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155,
156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51, 52}, {43,
44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99,
100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {231, 232}, {215, 216}, {199,
200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {71, 72}, {55, 56}, {23,
24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {239, 240}, {207,
208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223,
224}, {159, 160}, {95, 96}, {4, 103}, {144, 243}, {140, 239}, {136, 235}, {132,
231}, {128, 227}, {8, 107}, {12, 111}, {16, 115}, {20, 119}, {24, 123}, {28,
127}, {1, 100}, {145, 244}, {139, 238}, {137, 236}, {131, 230}, {129, 228}, {3,
102}, {9, 108}, {11, 110}, {17, 116}, {19, 118}, {25, 124}, {27, 126}, {2, 101},
{146, 245}, {138, 237}, {130, 229}, {10, 109}, {18, 117}, {26, 125}, {5, 104},
{135, 234}, {133, 232}, {7, 106}, {21, 120}, {23, 122}, {6, 105}, {134, 233},
{22, 121}, {13, 112}, {143, 242}, {141, 240}, {15, 114}, {14, 113}, {191, 192},
{142, 241}, {63, 64}, {1, 147}, {69, 215}, {68, 214}, {65, 211}, {64, 210}, {45,
191}, {44, 190}, {4, 150}, {5, 151}, {8, 154}, {9, 155}, {12, 158}, {13, 159},
{32, 178}, {33, 179}, {36, 182}, {37, 183}, {40, 186}, {41, 187}, {72, 218},
{73, 219}, {76, 222}, {77, 223}, {96, 242}, {97, 243}, {2, 148}, {67, 213}, {66,
212}, {43, 189}, {42, 188}, {3, 149}, {10, 156}, {11, 157}, {34, 180}, {35,
181}, {74, 220}, {75, 221}, {98, 244}, {99, 245}, {29, 128}, {127, 226}, {125,
224}, {63, 162}, {61, 160}, {31, 130}, {93, 192}, {95, 194}, {6, 152}, {71,
217}, {70, 216}, {7, 153}, {38, 184}, {39, 185}, {30, 129}, {126, 225}, {62,
161}, {94, 193}, {32, 131}, {60, 159}, {56, 155}, {52, 151}, {48, 147}, {44,
143}, {36, 135}, {40, 139}, {96, 195}, {100, 199}, {104, 203}, {108, 207}, {112,
211}, {116, 215}, {120, 219}, {124, 223}, {33, 132}, {59, 158}, {57, 156}, {51,
150}, {49, 148}, {43, 142}, {35, 134}, {41, 140}, {97, 196}, {99, 198}, {105,
204}, {107, 206}, {113, 212}, {115, 214}, {121, 220}, {123, 222}, {34, 133},
{58, 157}, {50, 149}, {42, 141}, {98, 197}, {106, 205}, {114, 213}, {122, 221},
{37, 136}, {55, 154}, {53, 152}, {39, 138}, {101, 200}, {103, 202}, {117, 216},
{119, 218}, {14, 160}, {15, 161}, {30, 176}, {31, 177}, {78, 224}, {79, 225},
{94, 240}, {95, 241}, {38, 137}, {54, 153}, {102, 201}, {118, 217}, {16, 162},
{17, 163}, {20, 166}, {21, 167}, {24, 170}, {25, 171}, {28, 174}, {29, 175},
{80, 226}, {81, 227}, {84, 230}, {85, 231}, {88, 234}, {89, 235}, {92, 238},
{93, 239}, {18, 164}, {19, 165}, {26, 172}, {27, 173}, {82, 228}, {83, 229},
{90, 236}, {91, 237}, {45, 144}, {47, 146}, {109, 208}, {111, 210}, {22, 168},
{23, 169}, {86, 232}, {87, 233}, {46, 145}, {110, 209}, {64, 163}, {68, 167},
{72, 171}, {76, 175}, {80, 179}, {84, 183}, {88, 187}, {92, 191}, {65, 164},
{67, 166}, {73, 172}, {75, 174}, {81, 180}, {83, 182}, {89, 188}, {91, 190},
{66, 165}, {74, 173}, {82, 181}, {90, 189}, {69, 168}, {71, 170}, {85, 184},
{87, 186}, {46, 192}, {63, 209}, {62, 208}, {47, 193}, {70, 169}, {86, 185},
{48, 194}, {61, 207}, {60, 206}, {57, 203}, {56, 202}, {53, 199}, {52, 198},
{49, 195}, {1, 245}, {50, 196}, {59, 205}, {58, 204}, {51, 197}, {77, 176}, {79,
178}, {54, 200}, {55, 201}, {78, 177}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 147)(3, 48)(4, 194)(5, 95)(6, 241)(7, 142)(8, 43)(9, 189)(10, 90)(11,
236)(12, 137)(13, 38)(14, 184)(15, 85)(16, 231)(17, 132)(18, 33)(19, 179)(20,
80)(21, 226)(22, 127)(23, 28)(24, 174)(25, 75)(26, 221)(27, 122)(29, 169)(30,
70)(31, 216)(32, 117)(34, 164)(35, 65)(36, 211)(37, 112)(39, 159)(40, 60)(41,
206)(42, 107)(44, 154)(45, 55)(46, 201)(47, 102)(49, 149)(51, 196)(52, 97)(53,
243)(54, 144)(56, 191)(57, 92)(58, 238)(59, 139)(61, 186)(62, 87)(63, 233)(64,
134)(66, 181)(67, 82)(68, 228)(69, 129)(71, 176)(72, 77)(73, 223)(74, 124)(76,
171)(78, 218)(79, 119)(81, 166)(83, 213)(84, 114)(86, 161)(88, 208)(89, 109)(91,
156)(93, 203)(94, 104)(96, 151)(98, 198)(100, 245)(101, 146)(103, 193)(105,
240)(106, 141)(108, 188)(110, 235)(111, 136)(113, 183)(115, 230)(116, 131)(118,
178)(120, 225)(121, 126)(123, 173)(125, 220)(128, 168)(130, 215)(133, 163)(135,
210)(138, 158)(140, 205)(143, 153)(145, 200)(150, 195)(152, 242)(155, 190)(157,
237)(160, 185)(162, 232)(165, 180)(167, 227)(170, 175)(172, 222)(177, 217)(182,
212)(187, 207)(192, 202)(199, 244)(204, 239)(209, 234)(214, 229)(219, 224) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245)
c: (2, 100)(3, 199)(4, 53)(5, 152)(7, 105)(8, 204)(9, 58)(10, 157)(12, 110)(13,
209)(14, 63)(15, 162)(17, 115)(18, 214)(19, 68)(20, 167)(22, 120)(23, 219)(24,
73)(25, 172)(27, 125)(28, 224)(29, 78)(30, 177)(32, 130)(33, 229)(34, 83)(35,
182)(37, 135)(38, 234)(39, 88)(40, 187)(42, 140)(43, 239)(44, 93)(45, 192)(47,
145)(48, 244)(49, 98)(50, 197)(52, 150)(54, 103)(55, 202)(57, 155)(59, 108)(60,
207)(62, 160)(64, 113)(65, 212)(67, 165)(69, 118)(70, 217)(72, 170)(74, 123)(75,
222)(77, 175)(79, 128)(80, 227)(82, 180)(84, 133)(85, 232)(87, 185)(89, 138)(90,
237)(92, 190)(94, 143)(95, 242)(97, 195)(99, 148)(102, 200)(104, 153)(107,
205)(109, 158)(112, 210)(114, 163)(117, 215)(119, 168)(122, 220)(124, 173)(127,
225)(129, 178)(132, 230)(134, 183)(137, 235)(139, 188)(142, 240)(144, 193)(147,
245)(149, 198)(154, 203)(159, 208)(164, 213)(169, 218)(174, 223)(179, 228)(184,
233)(189, 238)(194, 243)
C4[ 245, 1 ]
245
-1 100 2 245 147
-2 1 101 3 148
-3 2 102 4 149
-4 3 103 5 150
-5 4 104 6 151
-6 5 105 7 152
-7 6 106 8 153
-8 154 7 107 9
-9 155 8 108 10
-10 11 156 9 109
-11 110 12 157 10
-12 11 111 13 158
-13 12 112 14 159
-14 13 113 15 160
-15 14 114 16 161
-16 15 115 17 162
-17 16 116 18 163
-18 17 117 19 164
-19 165 18 118 20
-20 166 19 119 21
-21 22 167 20 120
-22 121 23 168 21
-23 22 122 24 169
-24 23 123 25 170
-25 24 124 26 171
-26 25 125 27 172
-27 26 126 28 173
-28 27 127 29 174
-29 28 128 30 175
-30 176 29 129 31
-31 177 30 130 32
-32 33 178 31 131
-33 132 34 179 32
-34 33 133 35 180
-35 34 134 36 181
-36 35 135 37 182
-37 36 136 38 183
-38 37 137 39 184
-39 38 138 40 185
-40 39 139 41 186
-41 187 40 140 42
-42 188 41 141 43
-43 44 189 42 142
-44 143 45 190 43
-45 44 144 46 191
-46 45 145 47 192
-47 46 146 48 193
-48 47 147 49 194
-49 48 148 50 195
-50 49 149 51 196
-51 50 150 52 197
-52 198 51 151 53
-53 199 52 152 54
-54 55 200 53 153
-55 154 56 201 54
-56 55 155 57 202
-57 56 156 58 203
-58 57 157 59 204
-59 58 158 60 205
-60 59 159 61 206
-61 60 160 62 207
-62 61 161 63 208
-63 209 62 162 64
-64 210 63 163 65
-65 66 211 64 164
-66 165 67 212 65
-67 66 166 68 213
-68 67 167 69 214
-69 68 168 70 215
-70 69 169 71 216
-71 70 170 72 217
-72 71 171 73 218
-73 72 172 74 219
-74 220 73 173 75
-75 221 74 174 76
-76 77 222 75 175
-77 176 78 223 76
-78 77 177 79 224
-79 78 178 80 225
-80 79 179 81 226
-81 80 180 82 227
-82 81 181 83 228
-83 82 182 84 229
-84 83 183 85 230
-85 231 84 184 86
-86 232 85 185 87
-87 88 233 86 186
-88 187 89 234 87
-89 88 188 90 235
-90 89 189 91 236
-91 90 190 92 237
-92 91 191 93 238
-93 92 192 94 239
-94 93 193 95 240
-95 94 194 96 241
-96 242 95 195 97
-97 243 96 196 98
-98 99 244 97 197
-99 198 100 245 98
-100 99 1 199 101
-101 100 2 200 102
-102 101 3 201 103
-103 102 4 202 104
-104 103 5 203 105
-105 104 6 204 106
-106 105 7 205 107
-107 106 8 206 108
-108 107 9 207 109
-109 110 108 10 208
-110 11 209 111 109
-111 110 12 210 112
-112 111 13 211 113
-113 112 14 212 114
-114 113 15 213 115
-115 114 16 214 116
-116 115 17 215 117
-117 116 18 216 118
-118 117 19 217 119
-119 118 20 218 120
-120 121 119 21 219
-121 22 220 122 120
-122 121 23 221 123
-123 122 24 222 124
-124 123 25 223 125
-125 124 26 224 126
-126 125 27 225 127
-127 126 28 226 128
-128 127 29 227 129
-129 128 30 228 130
-130 129 31 229 131
-131 132 130 32 230
-132 33 231 133 131
-133 132 34 232 134
-134 133 35 233 135
-135 134 36 234 136
-136 135 37 235 137
-137 136 38 236 138
-138 137 39 237 139
-139 138 40 238 140
-140 139 41 239 141
-141 140 42 240 142
-142 143 141 43 241
-143 44 242 144 142
-144 143 45 243 145
-145 144 46 244 146
-146 145 47 245 147
-147 1 146 48 148
-148 2 147 49 149
-149 3 148 50 150
-150 4 149 51 151
-151 5 150 52 152
-152 6 151 53 153
-153 154 7 152 54
-154 55 155 8 153
-155 154 56 156 9
-156 155 57 157 10
-157 11 156 58 158
-158 12 157 59 159
-159 13 158 60 160
-160 14 159 61 161
-161 15 160 62 162
-162 16 161 63 163
-163 17 162 64 164
-164 165 18 163 65
-165 66 166 19 164
-166 165 67 167 20
-167 166 68 168 21
-168 22 167 69 169
-169 23 168 70 170
-170 24 169 71 171
-171 25 170 72 172
-172 26 171 73 173
-173 27 172 74 174
-174 28 173 75 175
-175 176 29 174 76
-176 77 177 30 175
-177 176 78 178 31
-178 177 79 179 32
-179 33 178 80 180
-180 34 179 81 181
-181 35 180 82 182
-182 36 181 83 183
-183 37 182 84 184
-184 38 183 85 185
-185 39 184 86 186
-186 187 40 185 87
-187 88 188 41 186
-188 187 89 189 42
-189 188 90 190 43
-190 44 189 91 191
-191 45 190 92 192
-192 46 191 93 193
-193 47 192 94 194
-194 48 193 95 195
-195 49 194 96 196
-196 50 195 97 197
-197 198 51 196 98
-198 99 199 52 197
-199 198 100 200 53
-200 199 101 201 54
-201 55 200 102 202
-202 56 201 103 203
-203 57 202 104 204
-204 58 203 105 205
-205 59 204 106 206
-206 60 205 107 207
-207 61 206 108 208
-208 209 62 207 109
-209 110 210 63 208
-210 209 111 211 64
-211 210 112 212 65
-212 66 211 113 213
-213 67 212 114 214
-214 68 213 115 215
-215 69 214 116 216
-216 70 215 117 217
-217 71 216 118 218
-218 72 217 119 219
-219 220 73 218 120
-220 121 221 74 219
-221 220 122 222 75
-222 221 123 223 76
-223 77 222 124 224
-224 78 223 125 225
-225 79 224 126 226
-226 80 225 127 227
-227 81 226 128 228
-228 82 227 129 229
-229 83 228 130 230
-230 231 84 229 131
-231 132 232 85 230
-232 231 133 233 86
-233 232 134 234 87
-234 88 233 135 235
-235 89 234 136 236
-236 90 235 137 237
-237 91 236 138 238
-238 92 237 139 239
-239 93 238 140 240
-240 94 239 141 241
-241 242 95 240 142
-242 143 243 96 241
-243 242 144 244 97
-244 243 145 245 98
-245 99 1 244 146
0