[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 245, 2 ] =
{4,4}_14,7.
(I) Following is a form readable by MAGMA:
g:=Graph<245|{ {2, 3}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236,
237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225},
{222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197},
{194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {86,
87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52,
53}, {50, 51}, {48, 49}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47},
{88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102,
103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115},
{116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128,
129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {142, 143},
{144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156,
157}, {1, 2}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221,
222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198},
{193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169,
170}, {165, 166}, {161, 162}, {157, 158}, {85, 86}, {81, 82}, {77, 78}, {73,
74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {109, 110}, {113, 114},
{117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {3, 4}, {243, 244}, {235, 236}, {227,
228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180},
{171, 172}, {163, 164}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116},
{123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {231, 232},
{215, 216}, {199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24},
{39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16},
{239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {1, 35},
{141, 175}, {4, 39}, {208, 243}, {204, 239}, {200, 235}, {196, 231}, {192, 227},
{84, 119}, {80, 115}, {76, 111}, {72, 107}, {68, 103}, {64, 99}, {8, 43}, {12,
47}, {16, 51}, {20, 55}, {24, 59}, {28, 63}, {88, 123}, {92, 127}, {128, 163},
{132, 167}, {136, 171}, {140, 175}, {144, 179}, {148, 183}, {152, 187}, {156,
191}, {1, 36}, {209, 244}, {203, 238}, {201, 236}, {195, 230}, {193, 228}, {83,
118}, {81, 116}, {75, 110}, {73, 108}, {67, 102}, {65, 100}, {3, 38}, {9, 44},
{11, 46}, {17, 52}, {19, 54}, {25, 60}, {27, 62}, {89, 124}, {91, 126}, {129,
164}, {131, 166}, {137, 172}, {139, 174}, {145, 180}, {147, 182}, {153, 188},
{155, 190}, {211, 245}, {2, 37}, {210, 245}, {202, 237}, {194, 229}, {82, 117},
{74, 109}, {66, 101}, {10, 45}, {18, 53}, {26, 61}, {90, 125}, {130, 165}, {138,
173}, {146, 181}, {154, 189}, {5, 40}, {199, 234}, {197, 232}, {85, 120}, {71,
106}, {69, 104}, {7, 42}, {21, 56}, {23, 58}, {87, 122}, {133, 168}, {135, 170},
{149, 184}, {151, 186}, {71, 105}, {6, 41}, {198, 233}, {70, 105}, {22, 57},
{86, 121}, {134, 169}, {150, 185}, {13, 48}, {207, 242}, {205, 240}, {79, 114},
{77, 112}, {15, 50}, {141, 176}, {143, 178}, {14, 49}, {223, 224}, {206, 241},
{159, 160}, {78, 113}, {31, 32}, {95, 96}, {142, 177}, {29, 64}, {191, 226},
{189, 224}, {159, 194}, {157, 192}, {63, 98}, {61, 96}, {31, 66}, {30, 65},
{190, 225}, {158, 193}, {62, 97}, {36, 70}, {176, 210}, {32, 67}, {188, 223},
{184, 219}, {180, 215}, {176, 211}, {172, 207}, {168, 203}, {164, 199}, {160,
195}, {60, 95}, {56, 91}, {52, 87}, {48, 83}, {36, 71}, {40, 75}, {44, 79}, {33,
68}, {187, 222}, {185, 220}, {179, 214}, {177, 212}, {171, 206}, {169, 204},
{163, 198}, {161, 196}, {59, 94}, {57, 92}, {51, 86}, {49, 84}, {35, 70}, {41,
76}, {43, 78}, {34, 69}, {186, 221}, {178, 213}, {170, 205}, {162, 197}, {58,
93}, {50, 85}, {42, 77}, {37, 72}, {183, 218}, {181, 216}, {167, 202}, {165,
200}, {55, 90}, {53, 88}, {39, 74}, {38, 73}, {182, 217}, {166, 201}, {54, 89},
{45, 80}, {175, 210}, {173, 208}, {47, 82}, {46, 81}, {191, 192}, {174, 209},
{63, 64}, {23, 212}, {27, 216}, {31, 220}, {35, 224}, {22, 211}, {28, 217}, {30,
219}, {29, 218}, {24, 213}, {26, 215}, {25, 214}, {93, 128}, {95, 130}, {125,
160}, {127, 162}, {94, 129}, {126, 161}, {1, 225}, {2, 226}, {3, 227}, {4, 228},
{5, 229}, {6, 230}, {7, 231}, {8, 232}, {9, 233}, {10, 234}, {11, 235}, {12,
236}, {13, 237}, {14, 238}, {15, 239}, {16, 240}, {17, 241}, {18, 242}, {19,
243}, {20, 244}, {21, 245}, {96, 131}, {100, 135}, {104, 139}, {108, 143}, {112,
147}, {116, 151}, {120, 155}, {124, 159}, {97, 132}, {99, 134}, {105, 140},
{107, 142}, {113, 148}, {115, 150}, {121, 156}, {123, 158}, {106, 140}, {98,
133}, {106, 141}, {114, 149}, {122, 157}, {101, 136}, {103, 138}, {117, 152},
{119, 154}, {102, 137}, {118, 153}, {32, 221}, {34, 223}, {109, 144}, {111,
146}, {33, 222}, {110, 145}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)(36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70)(71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105)(106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140)(141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175)(176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 225, 35, 36)(3, 190, 34, 71)(4, 155, 33, 106)(5, 120, 32, 141)(6, 85, 31,
176)(7, 50, 30, 211)(8, 15, 29, 22)(9, 239, 28, 57)(10, 204, 27, 92)(11, 169,
26, 127)(12, 134, 25, 162)(13, 99, 24, 197)(14, 64, 23, 232)(16, 218, 21,
43)(17, 183, 20, 78)(18, 148, 19, 113)(37, 226, 224, 70)(38, 191, 223, 105)(39,
156, 222, 140)(40, 121, 221, 175)(41, 86, 220, 210)(42, 51, 219, 245)(44, 240,
217, 56)(45, 205, 216, 91)(46, 170, 215, 126)(47, 135, 214, 161)(48, 100, 213,
196)(49, 65, 212, 231)(52, 184, 244, 77)(53, 149, 243, 112)(54, 114, 242,
147)(55, 79, 241, 182)(58, 233, 238, 63)(59, 198, 237, 98)(60, 163, 236,
133)(61, 128, 235, 168)(62, 93, 234, 203)(66, 177, 230, 84)(67, 142, 229,
119)(68, 107, 228, 154)(69, 72, 227, 189)(73, 192, 188, 104)(74, 157, 187,
139)(75, 122, 186, 174)(76, 87, 185, 209)(80, 206, 181, 90)(81, 171, 180,
125)(82, 136, 179, 160)(83, 101, 178, 195)(88, 150, 208, 111)(89, 115, 207,
146)(94, 199, 202, 97)(95, 164, 201, 132)(96, 129, 200, 167)(102, 143, 194,
118)(103, 108, 193, 153)(109, 158, 152, 138)(110, 123, 151, 173)(116, 172, 145,
124)(117, 137, 144, 159)(130, 165, 166, 131)
C4[ 245, 2 ]
245
-1 2 35 36 225
-2 1 3 37 226
-3 2 4 38 227
-4 3 5 39 228
-5 4 6 40 229
-6 5 7 41 230
-7 231 6 8 42
-8 232 7 9 43
-9 44 233 8 10
-10 11 45 234 9
-11 12 46 235 10
-12 11 13 47 236
-13 12 14 48 237
-14 13 15 49 238
-15 14 16 50 239
-16 15 17 51 240
-17 16 18 52 241
-18 242 17 19 53
-19 243 18 20 54
-20 55 244 19 21
-21 22 56 245 20
-22 23 57 211 21
-23 22 24 58 212
-24 23 25 59 213
-25 24 26 60 214
-26 25 27 61 215
-27 26 28 62 216
-28 27 29 63 217
-29 28 30 64 218
-30 29 31 65 219
-31 66 220 30 32
-32 33 67 221 31
-33 34 68 222 32
-34 33 35 69 223
-35 1 34 70 224
-36 1 37 70 71
-37 2 36 38 72
-38 3 37 39 73
-39 4 38 40 74
-40 5 39 41 75
-41 6 40 42 76
-42 77 7 41 43
-43 44 78 8 42
-44 45 79 9 43
-45 44 46 80 10
-46 11 45 47 81
-47 12 46 48 82
-48 13 47 49 83
-49 14 48 50 84
-50 15 49 51 85
-51 16 50 52 86
-52 17 51 53 87
-53 88 18 52 54
-54 55 89 19 53
-55 56 90 20 54
-56 55 57 91 21
-57 22 56 58 92
-58 23 57 59 93
-59 24 58 60 94
-60 25 59 61 95
-61 26 60 62 96
-62 27 61 63 97
-63 28 62 64 98
-64 99 29 63 65
-65 66 100 30 64
-66 67 101 31 65
-67 66 68 102 32
-68 33 67 69 103
-69 34 68 70 104
-70 35 36 69 105
-71 36 72 105 106
-72 37 71 73 107
-73 38 72 74 108
-74 39 73 75 109
-75 110 40 74 76
-76 77 111 41 75
-77 78 112 42 76
-78 77 79 113 43
-79 44 78 80 114
-80 45 79 81 115
-81 46 80 82 116
-82 47 81 83 117
-83 48 82 84 118
-84 49 83 85 119
-85 50 84 86 120
-86 121 51 85 87
-87 88 122 52 86
-88 89 123 53 87
-89 88 90 124 54
-90 55 89 91 125
-91 56 90 92 126
-92 57 91 93 127
-93 58 92 94 128
-94 59 93 95 129
-95 60 94 96 130
-96 61 95 97 131
-97 132 62 96 98
-98 99 133 63 97
-99 100 134 64 98
-100 99 101 135 65
-101 66 100 102 136
-102 67 101 103 137
-103 68 102 104 138
-104 69 103 105 139
-105 70 71 104 140
-106 71 107 140 141
-107 72 106 108 142
-108 143 73 107 109
-109 110 144 74 108
-110 111 145 75 109
-111 110 112 146 76
-112 77 111 113 147
-113 78 112 114 148
-114 79 113 115 149
-115 80 114 116 150
-116 81 115 117 151
-117 82 116 118 152
-118 83 117 119 153
-119 154 84 118 120
-120 121 155 85 119
-121 122 156 86 120
-122 121 123 157 87
-123 88 122 124 158
-124 89 123 125 159
-125 90 124 126 160
-126 91 125 127 161
-127 92 126 128 162
-128 93 127 129 163
-129 94 128 130 164
-130 165 95 129 131
-131 132 166 96 130
-132 133 167 97 131
-133 132 134 168 98
-134 99 133 135 169
-135 100 134 136 170
-136 101 135 137 171
-137 102 136 138 172
-138 103 137 139 173
-139 104 138 140 174
-140 105 106 139 175
-141 176 106 142 175
-142 143 177 107 141
-143 144 178 108 142
-144 143 145 179 109
-145 110 144 146 180
-146 111 145 147 181
-147 112 146 148 182
-148 113 147 149 183
-149 114 148 150 184
-150 115 149 151 185
-151 116 150 152 186
-152 187 117 151 153
-153 154 188 118 152
-154 155 189 119 153
-155 154 156 190 120
-156 121 155 157 191
-157 122 156 158 192
-158 123 157 159 193
-159 124 158 160 194
-160 125 159 161 195
-161 126 160 162 196
-162 127 161 163 197
-163 198 128 162 164
-164 165 199 129 163
-165 166 200 130 164
-166 165 167 201 131
-167 132 166 168 202
-168 133 167 169 203
-169 134 168 170 204
-170 135 169 171 205
-171 136 170 172 206
-172 137 171 173 207
-173 138 172 174 208
-174 209 139 173 175
-175 210 140 141 174
-176 177 210 211 141
-177 176 178 212 142
-178 143 177 179 213
-179 144 178 180 214
-180 145 179 181 215
-181 146 180 182 216
-182 147 181 183 217
-183 148 182 184 218
-184 149 183 185 219
-185 220 150 184 186
-186 187 221 151 185
-187 188 222 152 186
-188 187 189 223 153
-189 154 188 190 224
-190 155 189 191 225
-191 156 190 192 226
-192 157 191 193 227
-193 158 192 194 228
-194 159 193 195 229
-195 160 194 196 230
-196 231 161 195 197
-197 198 232 162 196
-198 199 233 163 197
-199 198 200 234 164
-200 165 199 201 235
-201 166 200 202 236
-202 167 201 203 237
-203 168 202 204 238
-204 169 203 205 239
-205 170 204 206 240
-206 171 205 207 241
-207 242 172 206 208
-208 209 243 173 207
-209 210 244 174 208
-210 176 209 245 175
-211 22 176 212 245
-212 23 177 211 213
-213 24 178 212 214
-214 25 179 213 215
-215 26 180 214 216
-216 27 181 215 217
-217 28 182 216 218
-218 29 183 217 219
-219 220 30 184 218
-220 221 31 185 219
-221 220 222 32 186
-222 33 187 221 223
-223 34 188 222 224
-224 35 189 223 225
-225 1 190 224 226
-226 2 191 225 227
-227 3 192 226 228
-228 4 193 227 229
-229 5 194 228 230
-230 231 6 195 229
-231 232 7 196 230
-232 231 233 8 197
-233 198 232 234 9
-234 199 233 235 10
-235 11 200 234 236
-236 12 201 235 237
-237 13 202 236 238
-238 14 203 237 239
-239 15 204 238 240
-240 16 205 239 241
-241 242 17 206 240
-242 243 18 207 241
-243 242 244 19 208
-244 209 243 245 20
-245 210 211 244 21
0